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Abstract. In a maximally decimated filter bank with identical decimation ratios for all channels, the

perfect reconstructibility properties depend on the properties of the polyphase martrix. Various properties

and capabilities of the filter bank depend on the properties of the polyphase matrix as well as the nature

of its inverse. In this paper we undertake a study of the types of inwrses and characterize them according

to their system theoretic properties (i.e., properties of state-space descriptions, McMillan degree, degree of

determinant, and so forth). We find in particular that causal polyphase matrices with anticausal inverses have

an important role in filter bank theory. We study their properties both for the FIR and hIR cases. Techniques

for implementing anticausal fIR inverses based on state space descriptions are outlined. It is found that causal

FIR matrices with anticausal FIR inverses (abbreviated cafacaft) have a key role in the characterization of

FIR filter banks. In a companion paper [1] these results are applied for the factorization of biorthonormal

FIR filter banks, and a generalization of the lapped orthogonal transform called the biorthonormal lapped

transform (BOLT) developed.
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1. AV7RODUC77ON

The M-channel maximally decimated analysis/synthesis system of Fig. 1.1(a) has been studied exten-

sively and used in a number of applications. Extensive references can be found in [2]-[111. It is known

(e.g., see pp. 230-234 of [8]) that this can be redrawn as in Fig. 1.1(b) where E(z) and R(z) are the

polyphase matrices of the analysis and synthesis bank respectively. This system has the perfect reconstruc-

tion (PR) property if, in absence of the subband quantizers Q, we have i(n) = x(n). This is equivalent to

the requirement R(z)E(z) = I, that is,

R(z) = E (z).(1.1)

Thus, as is well-known, the perfect reconstruction problem in an M channel uniform filter bank is related

to the invertibility of the polyphase matrix E(z). Several classes of filter banks have been developed in the

past, depending on the nature of E(z) and its inverse. For example, an FIR filter bank is one where E(z)

and its inverse are FIR. Further examples are:

1. FIR filter banks where the polyphase matrix E(z) is a cascade of constant nonsingular matrices separated

by delays (Fig. 1.2). Here E(z) is causal and its inverse anticausal 112], [131.

2. FIR paraunitary filter banks [6J where E(z) is unitary on the unit circle and R(ei") = Et(eJl) (trans-

posed conjugate). When E(z) is causal, it can be expressed as the cascade in Fig. 1.2 with the matrices

T. constrained to be unitary. As in the first case, if E(z) is causal then the inverse is anticausal.

3. FIR filter banks where E(z) cannot be expressed as the cascade shown in Fig. 1.2. An example is the

second linear phase FIR PR system reported in [13J, and reproduced in [8J (Prob. 7.3). This is an

example where E(z) is causal but the inverse is neither causal nor anticausal.

4. IIR paraunitary filter banks. In the IIR paraunitary case, if E(z) is causal and stable then its inverse has

to be anticausal in order to be stable. For some special cases, techniques to implement such anticausal

inverses with finite latency have been discussed before [14]-[18).

5. Causal IIR filter banks where the analysis and synthesis filters are both causal and stable, which permit

a delay between the input and output (19].

Maximally decimated paraunitary filter banks are also orthonormal filter banks, whereas more generally

a maximally decimated PR filter bank is biorthonormal [11]. The first and third examples above are not

orthonormal but only biorthonormal. The above results have appeared in the literature as specific instances

of PR systems.

There does not appear to be any literature in digital signal processing which gives a general treatment

of inverses of transfer matrices, and classifies them according to the type of inverse. In this paper we do
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this, and derive system-theoretic characterizations for various cases. To give an example, we will show that a

causal system has an anticausal inverse if and only if the so-called realization matrix is nonsingular (Theorem

5.1). We also show that a causal FIR system E(z) has an anticausal FIR inverse if and only if the degree

of the determinant is equal to the McMillan degree, that is [det E(z)] = cz-N where N is the McMillan

degree of E(z). Both of these results will have applications: the first one in the stable implementation of an

anticausal UR synthesis bank and the second one in the characterization of a new class of FIR filter banks

called the iortonormal lapped transform (BOLT).

In our discussions causal transfer matrices with anticausal inverses, especially CAusal Fir systems with

AntiCAusal Fir Inverses (abbreviated as cafacafi) will play a crucial role. This is because essentially any FIR

biorthonormal filter bank (with uniform decimation ratios) can be covered with polyphase transfer matrices

of this type (Sec. 1.1).

In a companion paper 11] we will present applications of some of these results, for the case of FIR filter

banks. For example we will consider the problem of factorizing cafacafi systems into degree-one building

blocks. In particular a complete characterization of the biorthonormal lapped transform will be presented.

We will show examples of cafacafi systems which cannot be factorized into degree one systems. We also

show that any causal FIR system E(z) with an FIR inverse can always be factorized as G",.(z)Gc,'(z)

where Gr,.(z) is causal FIR with anticausal FIR inverse, and Gcc(z) is causal FIR with causal FIR inverse.

However, we will see that while causal FIR systems with anticausal FIR inverses can be factorized under

some conditions, unimodular matrices often cannot be factorized into convenient degree one systems.

1. 1. Causal LT7 systems with anticausal Inverses

In this paper we will discuss the theory of causal linear time invariant (LTI) systems with anticausal

inverses. It turns out that these systems have an important role in maximally decimated PR (i.e., biorthonor-

mal) filter banks (both FIR and Im). In fact essentially all FIR PR systems can be characterized with these

systems. Furthermore, unlike arbitrary FIR systems with FIR inverses, the system-theoretic properties and

factorizability of these systems are more tractable and elegant.

A causal p x r transfer matrix 00

G(z) = zng(n) (1.2)
Rff0

is said to have an anticausal inverse if there exists an r x p transfer matrix
0 co

H(z) = E z-nh(n) = E znh(-n) (1.3)
n=-oo n=O

such that H(z)G(z) = I,. Thus H(z) is the left inverse of G(z). We are mostly interested in the M x M

case (i.e., p = r = M) because in maximally decimated filter banks, the polyphase matrix E(z) is M x M.
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For the non maximally decimated case, we have p > r with p representing the number of channels and r

the decimation ratios. The relevance and importance of causal systems with anticausal inverses depends on

whether we are considering the FIR or the IR case.

Relevance In the Case of IIR Filter Banks

The idea of using an anticausal inverse in order to implement stable IIR filter banks is well-known,

and was first proposed in [141 for image subband coding where the inputs have finite length. The fact that

IIR inverses can be implemented in an anticausal fashion if their state variables are properly initialized was

pointed out in 1161. A general theory of anticausal inversion was then presented in [18]. The (somewhat

counterintuitive) result that such anticausal inversion for the IIR case can be performed even with infinitely

long input sequences was pointed out in [17]. t In Sec. 3.2 we will review these ideas in the most general

setting of a state space formulation.

Relevance in the Case of FIR Filter Banks

In an FIR filter bank, the polyphase matrices E(z) and R(z) are both FIR. In this case the PR condition

(1.1) is satisfied if and only if E(z) has the property

det E(z) = cz-i (1.4)

for some c # 0 and integer J. An important problem in this context is the characterization or parameterization

of all FIR transfer matrices E(z) having the above property. There has been some progress in the past [20],

and there are many FIR examples in the literature satisfying (1.4) (any orthonormal or biorthonormal FIR

PR system is a valid example). However, the general characterization is still an open problem.

Given an FIR PR filter bank with polyphase matrices E(z) and R(z) satisfying (1.1), suppose we define

a new filter bank with polyphase matrices EI(z) - z-IE(z) and R&(z) - z'R(z) where I is an arbitrary

integer. Then the system is still FIR PR, with new FIR analysis filters z-rMH&(z) and FIR synthesis

filters zIMFk(z). For large enough I, we see that EI(z) is causal and its inverse Ri(z) anticausal. The filter

responses are unaffected except for a delay, and this does not affect important properties of the filter bank

(e.g., energy compaction, coding gain, etc.). Thus, we can essentially characterize all FIR PR filter banks

just by characterizing all causal FIR matrices with anticausal FIR inverses (abbreviated cafacafi).

In contrast, the family of causal FIR transfer matrices with causal FIR inverses (i.e., unimodlar matrices

in z- 1) are not very useful in characterizing the class of all FIR PR filter banks. First, restricting the

t While it is true that an anticausal IIR filter G-1 (z) with infinitely long input is in general unrealizable,

it becomes realizable if its input is the output of its causal inverse G(z).
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polyphase matrix to be unimodular results in a loss of generality; given a causal FIR system with arbitrary

FIR inverse, we cannot in general multiply it with a delay z- 1 to obtain a causal FIR system with a causal

FIR inverse. Furthermore, as shown in Sec. 2.1 of (11, unimodular matrices cannot in general be factorized

into degree-one unimodular building blocks.

A subclass of FIR PR systems are FIR paraunitary filter banks (which correspond to orthonormal

filter banks) where E(z) is unitary on the unit circle, and Et(1/z*)E(z) = I (superscript dagger denoting

transpose conjugation). For these systems, complete factorizations and characterizations have been found.

See (81 for detailed discussions. In this case, the choice

R(z) = E-1 (z) = Et(1/z') (1.5)

guarantees perfection reconstruction. Eqn. (1.5) shows that if E(z) is causal FIR the inverse is anticausal

FIR. In terms of the coefficients of the analysis filters hk(n) and synthesis filters fk(n), (1.5) is equivalent

to the condition fk(n) = h;(-n). In the IIl case this implies that if the analysis filters are causal and

stable, the synthesis filters are either anticausal or unstable. In [16]-[18], techniques for implementing stable

anticausal inverses are discussed.

The philosophy in this paper and the companion paper [11 is that by studying the more general class of

cafacafi systems, of which paraunitary systems are special cases, we can characterize all FIR biorthonormal

filter banks (with identical decimation ratio M in all channels). Study of cafacafi systems is more tractable

than arbitrary FIR systems with FIR inverse, but at the same time it leads to very little loss of generality

as we will show. As stated above, paraunitary systems are already special cases of cafacafi systems. One

outcome of the proposed theory is the generalization of the lapped orthogonal transform (LOT) [21],[22],[31

to the biorthonormal case. This will be called the biorthonormal lapped transform (BOLT). In [11 we will

present a factorization theorem that covers all BOLTs, and generates the LOT as a special case.

1.2 "ain results and paper outline

1. In Sec. 2 we introduce causal systems with anticausal inverses. In the FIR case, the implementation of

the anticausal inverse is trivial as long as we permit a finite latency between the input and the output

(in this sense it is not really anticausal!). In Sec. 3 we show that even in the IIR case anticausal inverses

can be implemented using the notion of state space descriptions. It is shown that such inversion is

possible as long as we initialize the state variable of the inverse system properly. The result holds even

with IIR input signals, and can be extended to time varying filter banks.

2. In Sec. 4 we study FIR systems with FIR inverses in terms of the Smith-form and Smith-McMillan

form, which are well-known tools in system theory.
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3. In Sec. 5 we study deeper the properties of linear time invariant systems with anticausal inverses.

We show that an anticausal inverse exists if and only if the so-called realtrztin matrix of a minimal

implementation is nonsingular (Theorem 5.1). We then specialize to causal FIR systems with anticausal

FIR inverses (cafacafi systems), and state the cofacafi property in terms of the Smith-McMillan form.

We finally show in this section that for a causal FIR system G(z) having an FIR inverse, the inverse is

anticausal if and only if the degree of [det G(z)] is equal to the McMillan degree of G(z).

Notations and acronyms

1. Bold faced quantities (and calligraphic characters such as P, U, V) represent matrices and vectors. The

notations AT, A* and At represent, respectively, the transpose, conjugate, and transpose-conjugate

of A. The accent 'tilde' is defined as follows: 1(z) = Ht(l/z*); thus if H(z) = ' h(n)z-" then

H(z) = •nht(-n)z-". On the unit circle H(z) = Ht(z).

2. The M-fold decimator (I M) has input output relation y(n) = x(Mn), and for the expander (Q M) it

is y(n) = x(n/M) when n = integer multiple of M, and zero otherwise [21, (81.

3. An FIR filter bank is one for which all the analysis and synthesis filters are FIR. Equivalently the

matrices E(z) and R(z) in Fig. 1.1 are FIR.

4. Causality and anticausality. A signal x(n) is causal if it is zero for n < 0 and anticausal if it ýs zero for

n > 0. In both cases the signal could be nonzero for n = 0. Causal and anticausal LTI systems have

impulse responses that are causal and anticausal respectively (see (1.2) and (1.3)). The output y(n) of

an anticausal system depends only on the input x(m) for m > n.

5. Cafacafi systems. The phrase CAusal Fir system with AntiCAusal Fir Inverse arises many times in this

paper, and will be abbreviated as cafafac&

6. Order versus degree. The order of a causal rational transfer matrix G(z) is defined as the largest power

of z-1 in its expression, whereas the McMillan degree (often called just degree) is the smallest number of

delays with which we can implement the system. For example if G(z) = g(0) + z-2g(1) with g(1) 9 0

then its order = 1 whereas the degree equals the rank of g(1) (p. 667 of [8)). For anticausal systems

we define the order and degree in a similar way. For example, the degree is the minimum number of

advance operators (z elements) required to implement the system.

7. The ideal time-reversal operator TR (Fig. 1.3(a)) has the input output relation yt(n) = z(-n). If we

sandwich an LTI system with transfer function H(z) between two TR operators, the result remains LTI

with transfer function H(z-1 ) (Fig. 1.3(b)). So if H(z) is causal, the system in Fig. 1.3(b) is anticausal.

2 CAUSAL LTISYSTEMS WITH ANTICAUSAL INVERSES
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An r-input p-output LTI system is characterized by a p x r transfer matrix G(z). It has an inverse (left

inverse to be precise) if there exits K(z) such that H(z)G(z) = I,. Ifp = r then the inverse H(z), if it exists,

is unique in the z-domain. However, the inverse z-transform of H(z) may still not be unique.

Consider the scalar example G(z) = 1 - az-1. The inverse is H(z) = 1/(1 - az-1 ), and has the

causal impulse response h(n) = onl(n) (where l(n) is the unit step) or the anticausal impulse response

h(n) =f -eal(-n - 1) depending on the region of convergence chosen for the z-transform [231. Thus an

anticausal inverse exists in this case, even though there also exists a causal inverse. Unless a = 0 only one

of these inverses is stable.

In the above scalar example, the system G(z) is FIR and the inverse is IIRL In the matrix case, it is

possible to have nontrivial examples of FIR matrices with FIR inverses. Here are three possible situations:

Example 2..: Causal FIR with causal FIR inverse (unimodular matrix in z-1):

G(z)= 1 ]+zi[o 0], Go1(z)=[ 0] Zi[0 0] (2.1)

Example 2.: Causal FIR with anticausal FIR inverse (cafacafi):

G(z) =0.5[1 1 + 0.5z-1 [~ 1' G-1(z)=0.5[ +] 0o.5z1 (2.2)

Example 2.3: Causal FIR with mixed FIR inverse:

(2.3)

In each case the inverse is unique in the z domain (since p = r = 2) as well as in the time domain (since the

inverse is FIR). In all the examples, G(z) is causal FIR and the inverse is FIR.

Some known 11R anticausal filter banks

There is a class of two-channel IIR filter banks called power symmetric filter banks (Sec. 5.3 of [8]).

Here the two analysis filters have the form

Ho(z) = 2(z)+z-1(Z), Hi(z) = *(z) 2a(z) (2.4)

where ao(z) and al(z) are stable allpass functions. If the synthesis filters are chosen as Fo(z) = Ho(z) and

Fi(z) = -Hi(z) then the analysis/synthesis system is free from aliasing and amplitude distortions, and

suffers only from phase distortion. An example of Ho(z) satisfying the above form is a digital Butterworth
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or elliptic lowpss filter with specifications satisfying the power symmetric condition (p. 211 of [8]). Fig.

2.1(a) shows the polyphase implementation of this system.

It was proposed in [14] that if the synthesis bank is chosen as in Fig. 2.1(b), that is, the synthesis filters

are chosen as

Fo(z) = Zo(z 2) + z-l (z2), Fa(z) = 4D(Z2) - za1 (z2), (2.5)

then the system will have perfect reconstruction, i.e., the phase distortion mentioned above will also be

eliminated. This follows from the fact that an allpass function a,(z) satisfies a(z)ai(z) = 1. But if aj(z)

are causal stable allpass filters they have poles inside the unit circle and zeros outside. So 2(z) has all

poles outside the unit circle making them unstable unless the filters are implemented in an anticausal

manner. It was shown in 1161 that such an anticausal synthesis bank can indeed be implemented provided

we appropriately transmit the state variables of the filter realizations in the analysis bank. In Sec. 3 we will

present this in a more general context for arbitrary linear systems using the state space formulation.

J IMPLEMENTATION OF ANTICAUSAL IN VERSES

Consider an M-input M-output causal system with M x M transfer matrix G(z), and let the state

space description of a minimal implementation be

x(n + 1)] = [A B [x(n)J (3.1)y~n L D L-n)J

so that G(z) = D + C(zI - A)-yB. We will assume that [det G(z)) i 0 so that a unique inverse G-1 (z)

exists. If this has an anticausal inverse z-transform, then we say that an anticausal inverse of G(z) exists.

In general this is not guaranteed (even if [det G(z)] # 0). For example, Iz1 0] has the unique causal

inverse H(z) 1 [ 1 0] , and there does not exist an anticausal inverse. In Sec. 5.1 and 5.2 we provide

necessary and sufficient conditions for the existence of anticausal inverses.

£7. Finding and Implementing an anticausa In verge

The matrix 7Z in (3.1) is said to be the realization matrix of the implementation. If this is nonsingular,

we can find an anticausal inverse, as we now show. t For this consider the causal system described by

9() 1 = [A(3.2)
[~n) CJ f)b 6(n)J

where

flI_[A BI-' =VA-, (3.3)

t We will show later (Theorem 5.1) that if 7R is singular, then an anticausal inverse will not even exist.
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The input and output of this system are denoted •(n) and Y(n) respectively, to distinguish them from (3.1).

To find its transfer function in terms of (A, B, C, D), note that if we premultiply (3.2) with R and take

z-transforms we can eliminate the state vector i(n) to obtain

0(Z) = (C(z-1 - A)B + D) z

so that Y(z) = IG(z-1)]-1U(z). in other words, the transfer function of the causal system (3.2) is given by

H(z-') ý [G(z-1)]-f . This has a causal impulse response h(-n). Now consider the scheme of Fig. 3.1(a).
Here, the causal system (3.2) is sandwiched between the time-reversal (TR) operators. It therefore has the

transfer function H(z) = [G(z)] 1- indeed (compare with Fig. 1.3(b)), and its anticausal impulse response is

h(n). Fig. 3.1(b) shows an equivalent representation of this system, where we have used zA instead of z-1 I,

thereby eliminating the TR operators. Finally Fig. 3.1(c) shows the internal details of the system of Fig.

3.1(a).

Tuansfer function, pokei and egenvalues. From Fig. 3.1(b) we see that the transfer function of the

inverse can be written as

G-'(z) D= D + (z-lI - -X)-'fi (3.4)

which should be compared with the transfer function of (3.1) which is G(z) = D + C(zI - A)-1 B. The

eigenvalues of A are the poles of G(z) 131], 18), whereas the eigenvalues of A are the reciprocals of the poles

of G-'(z). If G-1 (z) is anticausal stable, then the poles are outside the unit circle so that the eigenvalues

of A are inside the unit circle.

3.2 Cho/ce of I/nti cond/tons

If we apply an input u(n) to the system (3.1) under zero initial conditions, then the output y(n) is

possibly of infinite duration even if the input might be of finite duration (FIR). In theory, if this infinite-

length output y(n) is "fed" into the system in Fig. 3.1(a), its output will be u(n). For, we have shown the

transfer function of Fig. 3.1(a) to be the inverse of that of (3.1). In practice this requires infinite latency (or

infinite storage) because of the idealized time reversal operators operating on possibly infinitely long signals.

In practice we can reduce this latency to a finite value by using the side information provided by the

state vector x(n). This is achieved by performing the computation in blocks. We will explain the details by

refering to the state space equations (3.1) and (3.2). Suppose we start the system (3.1) with the initial state

x(O) and apply the causal input u(n), possibly of infinite duration. Consider a segment of L samples

u(O), u(1),..., u(L - 1) (3.5)
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where L is an arbitrary integer. Denote the output during this period as

y(0), y(l),..., y(L - 1). (3.6)

The state vector x(L) and the above segment of the output are completely determined by the input segment

(3.5) and initial state x(0). Based only on the knowledge of x(L) and the above finite segment of the output

we can reconstruct the input segment (3.5) and the initial state x(O), if 1Z in (3.1) is nonsingular. For

example, from the knowledge of x(L) and y(L - 1) we can computeEx(L - 1)1 A B ' ().
I I I(3.7)

u(L - 1)] = 1C DJ(xL-) A B ' yx(L-)Jj 37

and from the knowledge of x(L - I) and y(L - 2) we can then compute

x(L - 2) A ]- xL 1](38
u(L-)] =IC [y(L - 2)

and so forth. More generally, if we run the state space equations (3.2) by setting the initial state to be

i(L) = x(L), (3.9)

and the input to be

i(L + k) = y(L - I - k), 0:_ k < L - 1 (3.10)

the output for this duration will be

S;(L~k) =u(L-l-k), 0:5k_5L-l, (3.11)

and the final state will be 2(2L) = x(O). This is schematically shown in Fig. 3.2. Since P(2L - 1) = u(O) we

see that the latency is equal to 2L- 1.

Summarizing, if we know a finite-duration segment of the output y(n) of the system (3.1), and the state

variable x(L) at the end of this duration, we can use the above time-reversed segment and the state x(L)

to compute the corresponding input segment (3.5) and the initial state x(0). We can repeat this process for

the next set of L input samples

u(L), u(L + 1),..., u(2L - 1). (3.12)

If the output of (3.1) in response to the above input and initial state x(L) is

y(L), y(L + 1)..., y(2L- 1), (3.13)

we can recompute the input segment (3.12) and the initial state x(L) from the output segment (3.13) and

the final state x(2L).
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This time-reversed inversion process can be repeated indefinitely no matter how long the input signal

is, simply by working with blocks of length L. In effect the ideal unrealizable time reversal operator in Fig.

3.1(a) has been replaced with (3.11) which represents the time reversal of a finite-size block. In order to

perform the inversion (i.e., compute the input u(n) from the output y(n), the inversion process needs the

"side information" in the form of the state vectors

x(L), x(2L), x(3L),... (3.14)

This is the L-fold decimated version {x(nL)} of the state vector sequence {x(n)}. As the block length L

gets smaller, the latency or delay in the inversion process gets smaller, but the required amount of "side

information" per unit time increases.

In subband coding practice, the subband signals y(n) are (heavily) quantized, and the above inversion

cannot reconstruct u(n) perfectly even if x(nL) has high precision. In fact, one can solve for the best choice

of initializing state vectors, that minimize the mean square reconstruction error in presence of subband

quantization [24]. This optimal state sequence {x 0 (nL)} can be transmitted (instead of {x(nL)}) with high

precision, and used as the side information for signal reconstruction.

Transmission of the state

Returning to the scheme of Eq. (3.9)-(3.11), suppose we set the initial state to i(L) = 0 instead of

R(L) = x(L), and apply the input (3.10). Then by linearity the final state will be

i(2L) = x(0) - ALx(L), (3.15)

instead of R(2L) = x(O). Thus, if x(L) is not transmitted, we can estimate it by computing i(2L) as above

and solving for x(L). In the context of filter bank implementation, this means that there is no need to

transmit the state x(L) because it can be estimated from the subband outputs (3.6) provided x(0) is known.

Usually x(0) = 0 so this is not a limitation. However, this approach to estimating the initial state at the

synthesis bank end (rather than transmitting it) has some limitations.

First, in the case of IIR inputs where we have to transmit the states and outputs in blocks, it is

not appropriate to assume x(O) = 0 at the beginning of each block. So the above alternative reduces to

transmitting the initial state rather than the final state periodically, and this does not save us anything.

Second, the above estimation of x(L) involves inversion of A, and fails if this matrix is singular. Finally, since

the subbands are usually quantized heavily (i.e., (3.6) are quantized), we get R(2L) = x(0) -- XLx(L)+ error,

and the estimation of x(L) by inversion of ;L might further amplify this error. In fact, the motivation for

time reversed implementation of IIR inverses came from the fact that certain synthesis filters were stable
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only in the anticausal form 114]. In these cases the eigenvalues of A are inside the unit circle (see end of Sec.

3.1) so that it is not wise to compute -L for large L.

The best strategy therefore is to trasmit the side information (final state at the end of each block)

rather than trying to estimate it from the quantized subbands. The increase of data rate due to this side

information is negligible when the block length is large.

Generalizations

1. The rectangular case. It can be shown that the above time-reversal technique works for the case of p x r

transfer matrices (as arises in nonmaximally decimated filter banks) provided the matrix 7Z, which is

now rectangular, has a left inverse [25]. Details are omitted here.

2. The time-varying case. Recently there has been some interest in the design and implementation of

time varying filter banks with the perfect reconstruction property 125]-129]. In this case the polyphase

matrices E(z) and R(z) are replaced with time varying linear systems. The state space equations (3.1)

and (3.2) are accordingly time varying, that is (A,B, C,D) are replaced with A(n), B(n), C(n) and

D(n), and the realization matrix becomes a function of time, R(n). If X(n) is nonsingular for each n,

then the time-reversed inversion process described previously continues to work with slight change of

notations.

4. FIR SYSE MS P/T 7 FIR IN VERSES

We now state some preliminary results for causal FIR transfer matrices with FIR inverses, paving the

way for more results in the following sections. In all discussions, "causal FIR" is equivalent to "polynomial

in z-1" and "anticausal FIR" is equivalent to "polynomial in z."

Unimodular matrices. A unimodular matrix U(z) in z is a polynomial matrix in z, with the property

[det U(z)] = nonzero constant [30],[31],[8]. Note that

1. U-1 (z) exists and is also unimodular in z. So U(z) is anticausal FIR with anticausal FIR inverse.

2. None of the columns (or rows) of U(z) has a factor f(z) other than a constant. (Otherwise Idet U(z)]

would have this factor, which is not possible.)

3. We can write U(z) = u(O) + zu(1) + z2 u(2)... Note that U(O) = u(O) so [det u(O)] = [det U(O)] # 0,

that is u(0) is nonsingular. In particular, therefore, u(0) # 0.

4. A unimodular matrix in z-1 is a polynomial matrix in z- 1 with the above properties. It is a causal FIR

system with a causal FIR inverse. For an example, see beginning of Sec. 2.

For the rest of this section G(z) is a p x r matrix with normal rank r (i.e., there is some z for which the

rank is r). Note that G(z) has r inputs and p outputs. In maximally decimated filter banks, the polyphase

11



matrices satisfy p = r, but we allow p 7 r to permit non maximally decimated systems (p > r). Such systems

also find applications in the theory of convolutional codes [321. Unless mentioned otherwise, 'inverse' stands

for left inverse. Thus H(z) is an inverse if H(z)G(z) = I1.

A . the Sm .I-foim and the Smit-NMIilon form f33J,f30,31J,j1

Given a p x r polynomial matrix P(x) in the variable:, it can always be expressed in the form P(z) -

U(z)r(x)w(x) where (i) U(z) and W(z) are unimodular in x and (ii) r(w) is a p x r diagonal matrix with

the first p diagonal elements 'yj(X), 0•<_ i •_ p- 1 that are polynomials in x. (This is the Smith decomposition,

known for over hundred years [33]). Here p is the normal rank of P(z). The remaining diagonal elements

of rcx) are zero. The polynomials 7-(z) can always be assumed to be monic (i.e., highest power of z has

coefficient unity) and furthermore "yi(x)I•/y+i(z), that is, -yi(z) is a factor of "yi+i(z). Such a matrix r(z) is

said to be the Smith-form of P(z), and is unique (but U(x) and W(z) are not). In this paper we will have

occasions to use the Smith-form of polynomials in z (anticausal FIR systems) as well as polynomials in z-1

(causal FIR).

The Smith-McMillan form, which derives from the Smith-form, is defined only for ca'sal rational sys-

tems. Thus let G(z) be a p x r matrix of rational functions (ratios of polynomials in z or z- 1) representing

a causal system. We first write G(z) = Gl(z)/d(z) where d(z) is a polynomial in z of sufficiently high order

that all the elements of Gi(z) are polynomials in z. We then express G1 (z) in Smith-form U(z)r(z)W(z)

(all quantities are polynomials in z) and then divide the diagonal elements of r(z) by d(z) to obtain the

form G(z) = U(z)A(z)W(z). Here U(z) and W(z) are unimodular polynomials in z and r(z) is a p x r

diagonal matrix with the first p diagonal elements A1(z) = a,(z)//•(z). In this scheme aj(z) and Pi(z) are

polynomials in z with no common factors for a given i, and we have at(z)Ia,+j(z), and PI+i(z)Ifl(z). The

sum of orders of all the Pi(z) polynomials can be shown to be equal to the McMillan degree of the causal

rational system G(z).

The Smith form and the Smith-McMillan form are covered in many references [30]-[32]. We will use

some of the properties given in these references. A review can be found in Sec. 13.5 of (8].

Theorem 4.1. Let G(z) be p x r causal FIR with normal rank r. Consider the Smith decomposition

G(z) = U(z)r(z)W(z) where U(z) and W(z) are unimodular in z- 1. (Since G(z) is causal FIR, the diagonal

elements -yi(z) of r(z) are causal FIR. Also 71j(z) • 0 for 0 <i < r - 1 since normal rank = r.) Then

1. G(z) has an FIR inverse if and only if -yi(z) - z-" and nj ._ 0 for 0:< i <_ r - 1.

2. G(z) has a causal F'R inverse if and only if we can write 7yi(z) = 1 for 0:< i:< r - 1.

12



Proof of Part 1. Since p 4 r in general, the proof is somewhat tricky. If 'yi(z) = z-"', we can take

the inverse to be W- 1 (z)r-1 (z)U-1 (z) where r- 1 (z) is the left inverse of the p x r matrix r(z) (obtained

by replacing -yi(z) with 1/ 1h(z), and transposing), and we are done. Conversely, suppose there is an FIR

inverse H(z). Apply an input X(z) to the system G(z) such that

r /0(Z) 1
W(z)X(z)= i.e., X(z)- W0(z) (4.1)

where Wo(z) is the 0th column of W(z)-W-'(z). Then the output is

Y(z) = U(z)I(z)W(z)X(z) = Uo(z), (4.2)

where Uo(z) is the 0th column of U(z). Unless -7o(z) has the form z-"G, the above input X(z) is IIR [because

W-'(z) is unimodular and its 0th column Wo(z) cannot have the common factor 7o(z)]. The output Uo(z)

is however FIR (Fig. 4.1). Thus the FIR inverse system H(z) produces HIR output Wo(z)/yo(z) in response

to FIR input UO(z), and this a contradiction. So we conclude '7i(z) has the form z-". That n4 _: 0 follows

from the fact that the Smith form is also causal.

Proof of Part 2. Again, if -fy(z) = 1, then the inverse W- 1 (z)r-1 (z)U-'(z) is causal FIR, and we

are done. Consider the converse. We already showed that if there is an FIR inverse then -'y(z) = z-11,

with ni >_ 0. In the above input/output construction, the inverse system H(z) is such that the input Uo(z)

produces the output zftWo(z). But since UO(z) and Wo(z) are columns of unimodular matrices in z-1 ,

they have nonzero constant coefficients. Thus if no > 0, the output of H(z) is noncausal in response to

a causal input (Fig. 4.2). Since this violates causality of the inverse H(z), we conclude no = 0, that is,

70W = 1. Similarly 'fi(z) = 1, for 0 < i:5 r - 1. VVV

Theorem 4.2. Let G(z) be p x r causal FIR Then G(z) has a causal FIR inverse if and only if it is

a submatrix of a p x p unimodular matrix in z- 1.

Proof. Let U1 (z) be p x p unimodular in z-1 such that G(z) is the leftmost p x r submatrix. Then

we can write G(z) = Ui(z)['0] so that G-(z) = [I O]U-l(z). Thus G(z) has a causal FIR inverse.

Conversely, suppose there is a causal FIR inverse. By Theorem 4.1 (part 2),

0(z) = U(z) [I I W(z) = U(z) [W(z)] (4.3)

where U(z) and W(z) are unimodular in z- 1 . Consider the product

U(z) [W(z) 0 ](4.4)
13



This is unimodular in z- 1, and its leftmost p x r submatrix is indeed G(z). VVV

4.1 SWW spo r iuyvwtaffww

Consider a p x r causal FIR system

G(z) = g(O) + z-'g(1) +... + z-Kg(K), (4.5)

with g(K) # 0 so that the order is K. Let (A,B, C,D) be a minimal realization of this system. Then all

the eigenvalues of A (which are the poles of the FIR system) are zero, and AN - 0 where N is the degree

of the system (i.e., A is N x N). Evidently N Ž_ K. Since g(n) = CAn-B for n > 0, it is immediate that

CAKB = 0. But more is true. It is shown in p. 709 [8] that CAK = 0 and AKB = 0.

In fact we can prove the stronger result that AK = 0. For this note that AKB = 0 implies

AK[B AB ... AK-BI = 0. (4.6)

By reachability of the minimal realization (A, B, C, D), the matrix following AK above has full row rank

N. So it follows that AK = 0. This also verifies AN = 0 since N > K.

In the next section we will see (in the p = r case) that if the system G(z) has an anticausal FIR inverse,

then the realization matrix R [Eq. (3.1)] is invertible. Moreover the state transition matrix A of the inverse

has all eigenvalues equal to zero, and AN - 0.

5 PROPERTIES OF SYSTEMS W7WIANT7CAUSAL INVERSES

In this section we develop some properties of causal transfer matrices with anticausal inverses. The first

pertains to the realization matrix 1Z of a state-space description (Theorem 5.1). The second pertains to the

Smith-McMillan form (Theorem 5.2) and the third to the McMillan degree (Theorem 5.3). These results are

useful in the implementation and factorizations [1] of such systems.

5 .. Nonungularity of the rwl/zatIon mntr/x

Theorem 5.1. Existence of anticausal inverse. Let (A, B,C,D) be the state space description of a

minimal realization of a causal system with M x M transfer matrix G(z). Then G(z) has an anticausal

inverse if and only if the realization matrix R A [A B] is nonsingular.

Proof. We have already shown that if 1R is nonsingular, the system of Fig. 3.1(a) is the anticausal

inverse of G(z) (even if (A, B, C, D) is not minimal). We only have to show that if there exists an anticausal

inverse, then R is necessarily nonsingular. The proof uses the minimality (i.e., reachability and observability)

of the realization (A, B, C, D).
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Let N be the McMillan degree of G(z). Suppose we start the system (3.1) at time n = -N with initial

condition x(-N) = 0. In view of reachability, we can always find an input sequence

... 0, 0, u(-N), u(-N + 1),., u(-1) (5.1)

such that the state vector x(0) has any value of our choice. Having done this we can still choose u(0) in any

manner. Thus, we can always arrange the vector [u() to be anything of our choice. Now (3.1) implies

I x(1) 1I A B[()

(x(l)5 A2 )X(0)(
y(O) j - DC Lu(O)J

If 1 is inglarwe ~c~ [ x(0) 1
If [ is singular, we can choose u(O) J to be a nonzero vector such that

(x(1) [A B X(O)] (53)

[y(0)J j C Di u(O) [0OJ

Thus x(1) = 0 and y(0) = 0. With u(n) = 0 for n > 0, the values of x(n + 1) and y(n) will therefore be

zero for all n _> 0. Summarizing, we can find an input sequence

... 0, 0, u(-N), u(-N + 1),..., u(-1), u(O), 0, 0,... (5.4)

such that the output has the form

... 0, 0, y(-N),y(-N+ 1),..., y(-1),,0,... (5.5)

under zero initial conditions (x(-N) = 0).

Now suppose there exists an inverse for G(z), with transfer function H(z). This inverse would produce

the F'I output (5.4) in response to the FIR input (5.5). So we obtain the schematic shown in Fig. 5.1.

This inverse K(z) cannot therefore be anticausal (see definition in Sec. 1.2), unless u(0) = 0 in the above

construction. But if u(0) = 0 then x(0) 0 0 (otherwise X(0) would become zero), and (5.3) impliesI u(O) I ol eoezr) n 53 mle

Ax(0) = 0 and Cx(0) = 0. This violates the PBH condition [311,[81 for complete observability, i.e., violates

minimality. Summarizing, if R• is singular, then there cannot exist an anticausal inverse. V V V

Example 5.1. Consider G(z) = 1 0] . Since the unique inverse H(z) = I - is causal, there

is no anticausal inverse for G(z). This leads us to conclude that the realization matrix P is singular. Indeed,

the minimal realization of G(z) given by Fig. 5.2hasA=0,B-[1 01,C=[0 1IT,D-=I 2 sothatR

is singular.
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Example 5.2. Let G(z) be M x M causal paraunitary. Then the inverse is 0(z) and is anticausal. Thus

causal paraunitary systems always have anticausal inverses (both FIR and UR cases). Th is consistent

with the fact that the R-matrix in this case is unitary upto similarity [81.

Example 5.3. Let G(z) = g(0) + 9(1)z- 1 +... + g(N)z-N (single-input single-output FIR). Then the

anticausal inverse can be obtained by long division [231. This is consistent with the fact that the direct form

structure has a nonsingular realization matrix (see, e.g., p. 670 of 181) as long as g(N) 9 0.

Example 5.4. Consider a causal IIR filter with transfer function G(z) = E:p,,z-"/j1 + Ef-.1 qz-"]

with pN 9 0, q, # 0. This has McMillan degree = max(N, D). It can be shown that the realization matrix of

the direct-form structure is nonsingular if and only if N > D. For example, if G(z) = (1+0.5z-')/(1+0.6z- 1 )

then there exists an anticausal inverse (namely the anticausal inverse z-transform of 1/G(z) 123]) whereas if

G(z) = 1/(1 + 0.6z- 1), then there is no anticausal inverse.

Further Observations on the Anticausal Inverse

1. Consequences of Theorem 5.1. If ever G(z) has an anticausal inverse, it can be implemented as in Fig.

3.1(a) because R is guaranteed nonsingular. No loss of generality is therefore encountered by restricting

ourself to the scheme of Fig. 3.1(a). Furthermore, if R is singular, an anticausal inverse does not exist

anyway, and we need not look for an implementation.

2. It is well-lcnown that the realization matrix R is invertible if D and A - BD-C are nonsingular (or if

A and D - CA- 1B are nonsingular). Neither of these, however, is a necessary condition. For example,

let A = 0,B = l,C = l and D = 0 so that G(z) = z-. Then R- [0 1] and is nonsingular; the

anticausal inverse is H(z) = z.

3. Since any two minimal realizations (A,B,C,D) and (A 1,B 1,C 1,D) are related by a similarity trans-

formation, their realization matrices are related as

[Al Br][T- 0][A B][T 0]

so that *9 is invertible if and only if R, is.

4. Minimality of inverse realization. The minimality of (A, B, C, D) implies that the anticausal realization

in Fig. 3.1(b) is also minimal (Appendix A). In this sense, we will say that the anticausal realization

in Fig. 3.1(a) is minimal. The number of delay and advance elements required to implement the TR

operators are obviously infinite and are not counted.

5. Degree of the inverse. Since i ' -.- the same size as A, the preceding minimality result also shows that

the degree of the anticausal inverse G-1(z) (in z) is the same as the degree of G(z) (in z-'). It is
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appealing to notice that a similar result is true for M x M causal systems with causal inverses also (p.

712 of 181).

6. Non•inguiarft and minimcalit. Let (A,B,C,D) be some realization of a causal system. If R is

nonsingua sand A has all eigenvalues equal to zero, then (A, B, C, D) is a minimal realization. To see

this assume the contrary, say the realization is not observable. Then there is v 6 0 such that Av = 0

and Cv = 0 (PBH test, 1311, [8]). This means the vector [0] annihilates R violating nonsingularity.

7. Stability. Stability of G(z) does not imply that of the inverse system, in general. For example, let

G(z) 1- az- 1 , which is stable for any a. Then the inverse H(z) = 1/(1 - az-1) has the anticausal

inverse transform -a"l(-n - 1) [231 (where l(n) is the unit step). This inverse is stable if and only if

Ial > 1.

£2 SY* eAf#Aif//k n sorm d Ako#WIa duiwe

We now present some results on the Smith-McMillan forms of FIR systems with FIR anticausal inverses.

This will also reveal an interesting property, namely that the McMillan degree is equal to the determinantal

degree in the square-matrix case.

Theorem 5.2. Smith-McMillan form. Let G(z) be p x r causal FIR with normal rank r. Let A(z) be

the Smith-McMiIlan form of G(z). That is G(z) = U(z)A(z)W(z) where U(z) and W(z) are unimodular

in z and X,(z) = a,(z)/A,(z) where o,(z), ,(z) are polynomials in z. Then

1. There exists an FIR inverse H(z) if and only if >,(z) = z- 1 ', for 0<5 i < r - 1.

2. There exists a ntiausal FIR inverse H(z) if and only ifA (z) = z-4 with t1 >_ 0, for 0:_ i_< r - 1. 0

Proof. First note that the FIR nature of G(z) implies A.(z' = z!4 for some integers ni. (Just recall

how the Smith-McMillan form is constructed by first obtaining the Smith form of a polynomial in z, then

dividing...) So >i(z) - z-n' x (polynomials in z). The full normal rank of G(z) means that none of the r

diagonal elements of the p x r matrix A(z) is zero.

The proof for Part I is similar to part I of Theorem 4.1. We only have to prove Part 2. If A,(z) = z-t,

, 2 0, then W-(z)A-1 (z)U-1 (z) is an anticausal FIR inverse. (Here A-1 (z) is the r x p matrix whose

diagonal elements are 1/kj(z)). We only have to prove that if there is an anticausal inverse H(z), then

4, 2! 0. Assume the contrary, for example, let to < 0. Apply an anticausal input X(z) to the system G(z)

such that W(z)X(z) = [1 0 ... 0oT. (For this, just choose X(z) to be the 0th column of W-1 (z).)

Then the output is Y(z) = zKUO(z) with K = - t o > 0. Here Uo(z) is the 0th column of U(z). So the input

17



and output are
X(z) = ... + z2x(-2) + zx(-1) + x(O)

Y(z) =... + zK+2y(-K - 2) + zK+ly(-K - 1) + zKy(-K) (5.6)

Since the columns of unimodular matrices cannot have constant term equal to zero, we have x(O) 3 0 and

y(-K) y 0.

The inverse system H(z) produces X(z) in response to Y(z). Since x(0) 9 0 and K > 0, this contradicts

anticausality of H(z) (Fig. 5.3). The conclusion is that it is not possible to have o < 0. Similarly it follows

that t, _> 0 for all . VVV

Theorem 5.3. McMillan degree of causal FIR system which have anticausal FIR inersus. Let G(z)

be M x M causal FIR with FIR inverse. Then [det G(z)] = cz-N for some integer N > 0. Moreover

N_< McMillan degree of G(z) (5.7)

with equality if and only if G(z) has an anticausal FIR inverse. 0

Proof. Consider the Smith-McMillan form G(z) = U(z)A(z)W(z). Since this has an FIR inverse, we

know from Theorem 5.2 that the diagonal elements of A(z) are z-'. So [det G(z)] = cz-N where N ti.

On the other hand the McMillan degree is 't,ýo ti. Thus

N= t1_: :5Et--= McMillan degree
i 4.>0

FRom Theorem 5.2 we know that t >0 for all i if and only if there exists an anticausal FIR inverse. So the

result follows. VVV

Comments.

1. A generalization of Theorem 5.3 for the rectangular case (p 9 r) can be found in Appendix B.

2. It is well-known that if G(z) is a causal M x M FIR parauuitary system then its determinant is given by

cz-N where N is the McMillan degree of G(z). We now see that this same property is what characterizes

any causal FIR system with anticausal FIR inverse. (Note that the inverse of the paraunitary system is

d(z), which is indeed anticausal.)

3. For any causal system G(z), it is well-known that the degree of [det G(z)] cannot exceed the McMillan

degree of [G(z)] (Sec. 13.8 of (81). According to Theorem 5.3, the degree of [det G(z)] has this mazimum

value if and only if the inverse is anticausal.

4. An example of a system not satisfying the requirements of Theorem 5.3 is when G(z) is unimodular in

z- 1. In this case the degree of the determinant is zero regardless of the McMillan degree. The inverse
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system in this case is causal. This is an extreme example where the degree of the determinant is the

smallest possible, and the inverse is entirely causal.

£&W& Imuespwow~a

Let G(z) = E'o z-mg(n) be M x M, and let H(z) = EL zh(n) be the anticausal FIR inverse.

Assume the orders K, L > 0 to avoid trivialities, and let g(O), g(K), h(0), and h(L) be nonnull matrices.

Then all of these are singular. To see this, note that the property G(z)H(z) = I implies, among other things,

the following:

g(0)h(L) = 0, and g(K)h(0) = 0, (5.8)

so that all the four matrices are singular.

Now suppose that we are given some M x M causal FIR transfer matrix G(z) = I,= z-"g(n), K > 0,

with an FIR inverse. If g(K) is nonsingular, then the inverse is guaranteed to be anticausal! (This does not

violate (5.8) as h(0) is guaranteed to be zero; see below.) To see this define

F(z) = zKG(z) = g(K) + zg(K - 1) +... + z'•g(O). (5.9)

If g(K) is nonsingular, then an anticausal inverse F- 1 (z) (possibly UIR) will exist (use See. 13.10.1 of (81,

with z- 1 replaced by z everywhere). So G(z) has the anticausal inverse H(z)AzKF-1(z). Since F- 1 (z) is

anticausal and K > 0, this means that h(n) = 0, n < K.

The highest coefficient g(K) and the Smith-McMillan form

We can draw further interesting conclusions about the coefficient of the highest power of z-1. Let G(z)

be a causal FIR system with FIR inverse. Then the Smith McMillan form has diagonal elements z-' and

we can assume to > 41... (This follows from the divisibility properties aj(z)1a 1 +i(z), and Ai+&(z)jA(z)).

Suppose the first s diagonal elements are equal, that is K = to = 11... = I.,- > tI. Then

pxp U(s) pxr A(s), rxr W(s)

where the elements of x are FIR, with all powers z-i satisfying i < K. Thus G(z) = -, g(n)z-", with

g(K)= uO 1. 0 jWO.

Since uo and w 0 are nonsingular, the rank of g(K) is equal tos. In particular g(K) has full rank (r since

p > r) if and only if

A(z) = [z-(I"] (5.10)
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In view of Theorem 5.2, this gives a second proof that if g(K) has full rank the FIR inverse is anticausal

(since t = K > 0 for all i).

We conclude this section by making a related observation. Given any FIR system G(z) = • g(n)z-¶,

we can always obtain a direct form implementation with Kr delays (e.g., Fig. 13.9-1 in [8]) so that the degree

is at most Kr. When g(K) has rank r it follows that the degree is precisely Kr (see Example 13.3.2 in [81).

Thus whenever the highest coefficient g(K) has full rank r the system has McMillan degree Kr, whether the

inverse is FIR or not.

. CONCLUDNA0 REMARKS

The properties of perfect reconstruction filter banks can be conveniently classified according to the

nature of the inverse of the polyphase matrix E(z). The main aim of this paper in this context has been

to place in evidence the system theoretic properties of transfer matrices with certain types of inverses. In

particular, cases where the inverses are causal, anticausal, and FIR, were considered detail. In [11, we will

find further applications of some of these results for the parameterization and factorization of a subclass of

causal FIR systems with anticausal FIR inverses (cafacaji systems). As noted in Sec. 1.1 such systems are

of interest because they can be used to characterize essentially all FIR PR filter banks.

Appeadix A. Minim/alty of anticaual Invers.

Assuming that (A, B,C,D) is minimal (i.e., passes the PBH test for reachability and observability

[311,[81) we will verify that (1, fi, C,D) defined in (3.3) also passes the PBH test. T1dhis can be done by

contradiction. Assume, for instance, that (6,1i) is not observable. Then there exists v 6 0 such that

Iv = Av and Cv =0. This means

The matrix on the left, which is R-1, is nonsingular, so that A # 0. Premultiplying both sides of (A.1) by

R and simplifying we obtain Av = v/A and Cv = 0, contradicting the assumed observability of (C, A).

Appendlx S. Generalk/zton of ThOim 5.3

Theorem B.I. McMillan degree of a system tuith anticausal inverse. Let G(z) be p x r causal FIR,

with an FIR left-inverse. Let N be the degree of a highest-degree r x r minor. Then N is the McMillan

degree of G(z) if and only if there exists an anticausal FIR inverse. 0

Note. The above minor need not have the form z'. Example: G(z)= 0 .
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Proof. From part I of Theorem 5.2 we know that the elements of the Smith-McMillan form are z-f',

Thus

McMillan degree of G(z) = • 4. (B.1)

Now recall how the Smith-McMillan form is derived. We first define Gi(z), a polynomial in z, by writing

G(z) = z-LG1 (z). Here L is a sufficiently large positive integer. The Smith form of GI(z) is a polynomial

in z. Since G1(z) has an FIR inverse, the diagonal elements of the Smith form of G1 (z) have the form

z"', ni Ž: 0. (Simila to Theorem 4.1, part 1). So the Smith-McMillan form of G(z) has diagonal elements

z-L+nd, so that

Ii = L - n. (B.2)

From the construction of the Smith form of GI(z) we know z", = A.+I(z)/Ai(z) where Ai(z) is the greatest

common divisor (god) of all the i x i minors of G,(z), and Ao = 1 [30]. From this, A,(z) = z (Ed nt ). This

means that all r x r minors of Gi (z) are of the form

z(E,") x [ja(0) + a(l)z + a(2)z' +...J. (B.3)

Since the god of all the xrminors is z (Ei n), at lent one of the r x rminors is such that a( 0)0. The

r x r minors of G(z) therefore have the form

z (-Lv+L' -') x (a(0) + a(1)z + a(2)z2 + ... 1, (B.4)

with at least one of them satisfying a(0) 6 0. Since G(z) is causal FIR, Eqn. (B.4) is a polynomial in z-1

(i.e., the positive powers of z eventually cancel). The largest possible degree of (B.4) therefore comes from

those minors with a(0) # 0, and is equal to Lr - E'.: ni = E'.O (L - n =) - 0 . Thus the degree of

the largest-degree minor of G(z) is given by

r--1
Eli _< EI 4 = McMillan degree of G(z) [from (B.1)] (B.5)

Equality holds if and only if all , _2 0, that is, if and only if G(z) has an anticausal inverse (by part 2 of

Theorem 5.2). VVV

ACkowwge~mnt

Some of the results in Sec. 4 and 5 were proved by the first author in response to interesting questions

raised by Prof. R. I. McEliece (Caltech) in the context of convolutional coding theory, and questions raised

by Dr. Anand Soman (past Caltech student).
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In a companion paper [11, we studied the system-theoretic properties of discrete time transfer matrices

in the context of inversion, and clasified them according to the types of inverses they had. In particular,

we outlined the role of CAusal Fir matrices with AntiCAusal Fir imsrmr (abbreviated caacq)fi in the

characterization of FIR perfect reconstruction filter banks.

Briefly, Fig. 1.1(a) represents a maximally decimated filter bank with identical decimation ratios in

all the channels. This can be redrawn in polyphase form as in Fig. 1.1(b). The system has the perfect

reconstruction property (i.e., i(n) = x(n) in absence of subband quantizers) if and only if R(z) - E-1 (z).

See [1) for detailed references on this topic. An FIR filter bank is one where E(z) and R(z) are FIR. In [I]

we argued that in the FIR case, if we study the cqfacaqf class of matrices E(z), it is sufficient to characterize

practically all FIR PR filter banks.

In contrast, the family of causal FIR trander matrices with causal FIR inverses (i.e., unimodular matrices

in z-1 ) are not very useful in characterizing the class of all FIR PR filter banks. First, restricting the

polyphase matrix to be unimodular results in a loss of generality; given a causal FIR system with arbitrary

FI inverse, we cannot in general multiply it with a delay z-I to obtain a causal FIR system with a causal

FIR inverse. Furthermore, as we will see at the end of Sec. 2.1, unimodular matrices cannot in general be

factorized into degree-one unimodular building blocks.t For these reasons we will not pursue the possibility

of characterizing FIR PR systems in terms of unimodular matrices alone. The class of cqfacafi systems are

more useful than unimodular sytems for this purpose.

In this paper we will use the results of (1] to obtain certain fundamental FIR building blocks with

FIR inverses. These building blocks can be considered to be the biorthonormal versions of the orthonormal

(paraunitary) systems reported earlier [3]-[5]. We will consider the factorization of cqacafi systems using

these building blocks and develop some results in this direction. For convenience we state from [11 two of

the system-theoretic results which play a crucial role in this paper:

1. An M x M causal LTI system G(z) has an anticausal inverse if and only if the realization matrix

of any minimal realization of G(z) is nonsingular (Theorem 5.1 of [1]). Whether the anticausal inverse

is FIR or not is not addressed by this result.

t Even though it is well-known [21 that unimodular matrices can be expressed as products of three kinds

of elementary matrices, that would not be a useful parameterization for filter bank design.
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2. Let G(z) be an M x M causal FIR system with FIR inverse. Then the inverse is anticausal FIR if and

only if [det G(z)] = cz-N where N = McMillan degree of G(z) (Theorem 5.3 of [11).

1. In Sec. 2 we present a degree-one building block for en!acafl systems, and derive conditions under which

arbitrary cafanfi systems can be factorized into these building blocks. Even though the building block

is the most general degree-one caufacafi system (as we show later in Sec. 4) we will see in Sec. 6 that it

cannot be used to factorize arbitrary cqfacafi systems.

2. In Sec. 3 we restate the factorizability conditions in terms of state space parameters.

3. Using this we show in Sec. 4 that a subclass of matrices called the biorthonormal lapped transforms

(BOLT, a generalization of the lapped orthogonal transform LOT [6i-18]), can always be factorized into

degree one c41cwft building blocks.

4. In Sec. 5 we study FIR transfer matrices of the form I-U0t +z-IUV t and show that many properties of

the inverse can be deduced from the eigenvalues of ytU (Theorem 5.2). We use this to find necessary and

sufficient conditions for any first order FIR matrix to be a BOLT. In particular, we impose conditions

on the degree-one factors derived in Sec. 2, guaranteeing the BOLT property structurally.

5. In Sec. 6 we derive examples of enfacafi systems that cannot be factorized into degree one building

blocks, and introduce degree two building blocks. It is also shown that there exist cqfaeji systems

which cannot be factorized using any combination of these building blocks.

6. However, in Sec. 7 we show that any causal FIR matrix with FIR inverse can be written as a product

of a factorizable cafacafi system and a unimodular matrix.

All notations and acronyms will be exactly as in I1.

A SYNTHESIS USING DEGREE-ONE BUILDNIO BLOCKS

In this section we introduce the general degree-one causal FIR building block of the form

V(z) = I - uvt + z-'uvt (2.1)

where u and v are M x 1 vectors, and study its properties. In particular, its role in the synthesis of FIR

causal systems with anticausal FIR inverses will be studied. Because of the appearance of the outer product

uvt, the building block is said to be diadic-bawe Fig. 2.1 shows a structure for this system. Note that

V(1) = I.

A . Propewb Of ON degwen uiding bloo

2



Theorem2.1. Conuider the MxM system V(z) =I- uvt+z-luvt where u and v are Mx I vectors

(so that the degree - I une u or v is zero). Then the following are true.

1. Idet V(z)] = 1 + vtu(z- - 1).

2. Let utv = 1, so that Idet V(z)J = z- 1 . In this case, V-1 (z) = V(z-1) = I - uvt + zuvt. That is, the

inverse is anticausal FIM. If u = v, then V(z) becomes the paraunitary building block known before 15).

3. Let utv = 0, so that [det V(z)] = 1 (i.e., V(z) is unimodular in z- 1 ). In this case V-2(z) = I+uvt -

z-Iuvt which is causal FIR. 0

Proof. Let xi, 0 :5 i :5 M - 2 be vectors orthogonal to v. Then V(z)xj = xj so that there are M - I

eigenvectors with eigenvalue unity. Next, by substitution we see that V(z)u = (I + vtu(z-1 - 1))u so that

(I + vtu(z-1 - 1)) is an eigenvalue. When vtu 9 0, u is not in the span of (xi). So we have found M

independent eigenvectors including u, and all but one have eigenvalue equal to unity. Thus

det V(z) = 1 + vtu(z-1 - 1). (2.2)

When vtu = 0 it can be shown that there are no eigenvectors of V(z) other than the xi (or their linear

combinations). For this note that V(z)w = w + (vtw)(z-1 - 1)u for any w. If w is an eigenvector, then

either (i) w is aligned to u or (ii) vtw =0 . Since vtu = 0, condition (i) implies vtw = 0 which is condition

(ii) again. The condition vtw = 0 means, of course, that w is a linear combination of xi's. So all the

eigenvectors are in the span of xe's, and the common eigenvalue is unity. Thus [det V(z)] = 1. That is, (2.2)

holds even with vtu = 0.

The stated forms of the inverses in parts 2 and 3 can be verified by direct multiplication of V(z) with

the claimed inverse and using utv = 0 or l as the case may be. VVv

Comments

1. For utv = 1, the following identity is easily verified:

I-uvt + z-Kuvt = 11 (i- uvt + z-uvt).
K times

2. Smith-McMilan forms. (Reviewed in Sec. 4.1 of [11). Since utv = 1 implies that V(z) has an anticausal

FIR inverse, so by Theorem 5.2 in [11 the Smith-McMillan form of V(z) is [z- 0]. On the other

hand, utv = 0 implies that V(z) is unimodular in z- 1 , and the Smith-McMillan form of V(z) is the

identity matrix modified as follows: the first diagonal element is replaced with z- 1 and the last diagonal

element replaced with z.

3. Let uvt $ 0 to avoid trivialities. Then we can show the following: V(z) has an (i) anticausal inverse

if and only if vtu # 0, (ii) FIR inverse if and only if v t u = 0 or 1. These will follow as special cases

3



of a mome general result (Theorem 5.2). Thus the inverse is anticausal FIR if and only if vtu = 1 and

causal FIR if and only if vtu = 0.

A related Unimodular system

Consider the M x M causal FIR system V(z) = I + z-luvt, where u and v are M x 1 vectors. If

vtu = 0 it can be verified that the inverse is I - z-luvt, so that V(z) is unimodular. A stronger result is

the following.

Lemma 2.1. The system V(z) = I + z-luvt has IIR inverse if vtu # 0, and causal FIR inverse when

vt u = 0. So V(z) is unimodular if and only if vtu = 0.

Proof. Let xi, 1 _< i :< M - I be a set of independent vectors orthogonal to v. Then V(z)xj = xi. On

the other hand V(z)u = (1 + z-lvtu)u. So

VZ[ P}=[Izltu P],

where P is M x (M - 1) with columns equal to xi. If vtu 6 0, the vector u is not in the span of x,. So

[u PJ is nonsingular and we get [det V(z)] = (1 + z-lvtu). This is not a delay since vtu 0 0. So the

inverse of V(z) is IH. VVV

More generally, let G(z) be any degree-one unimodular matrix in z- 1 . Since G(oo) is nonsingular, we

can always write G(z) = (I + z-luvt)D where v t u = 0 and D = G(oo).

A degree-two unfactorizable unimodular system. We now show that the unimodular system

G(z) [1 0]= [1 0]+Z-2[o 0] (2.3)

cannot be factorized into degree-one causal unlmodular systems. Suppose we could, then

G(z) = (Do + Z-iuovt) (D1 + Z'U1Vtj)' (2.4)

where Do and D, are nonsingular and must be such that DOD, = I. We can always rearrange this to be of

the form G(z) = (I+z-1uo~V)(I+z-Iujvt) by redefining the vectors u, and vy. Comparison of coefficients
of z- 1 in (2.3) and the product (I + z-luov0)(I + z-1uv t) shows that we need uoVo +ulv1 =0 so that

ul = cuo for some scalar c. This implies vtul - 0, since Vtuo = 0 for unimodularity of (I+ z-UoVt). Thus

the coefficient of z- 2 in (2.4) is uo(vtul)vt - 0, and the product (2.4) can never be equal to (2.3).

2.2- Deg~ee rduction using degree-one building blocks

We are given an M x M causal FIR matrix Gmn(z) with anticausal FIR inverse Hm(z):

K L

Gm(z) = I z-ng.(n), H.(z) = E znh.(n). (2.5)
n=O n=O

4



Assume K,L > 0 and gm(K) 96 0 and h,,(L) # 0 to avoid trivialities. Then K is the order of Gm.(z) and

L is the order of Hm(z). If the McMillan degree of G,m(z) is m, then

[det Gm(z)] = cz-"

(Theorem 5.3, [1)). Suppose we wish to express it as

Gmn(Z) = Vm(Z)Gu.-i(z) (2.6)

where Vm(z) is a degree-one causal FIR system with anticausal FIR inverse:

Vm(Z) = I - uvt + z-'uvt, vtu = 1. (2.7)

See Fig. 2.2(a). From Theorem 2.1 we have [det Vm(z)] = z- 1 so Eqn. (2.6) implies Idet Gm.-i(z)] -=

cz-(m-l). So we know that G-. 1 (z) has McMian degree (,n - 1) as long as it is also causal FIR with

anticausal FIR inverse (Theorem 5.3, [1]). If we can do this successfully m times, then the final remainder

Go(z) is cafacrfi with constant determinant so that it is just a nonsingular constant (Theorem 5.3, [11). This

would give the cascaded structure of Fig. 2.2(b).

It only remains to explore the conditions under which we can successfully ensure that Gm.-I(z) is

cafacali Since V; 1 (z) - V (z- 1 ) (Theorem 2.1), we can write

G.-I(Z) = (I - uvt + Zuvt )( (0) + z-Igm(1) + ... + z-Kgn(K)). (2.8)

Causality of the remainder G.-I(z) requires vtgm(0) = 0. Next consider

GL.(z) - (hm(O) + zhm(1) +...- + zLhm(L)) (I - uvt + z-uvt. (2.9)

Anticausality of this quantity requires hm(O)u = 0. Summarizing, the degree-reduction procedure will suc-

ceed if and only if there exist vectors u and v such that

vtg.(0) = 0, h,,(0)u = 0, IAu = 1. (2.10)

We know that gn(0) and h.(0) are singular (Sec. 5.3, [1]) and therefore there exist nonnull vectors v and u

satisfying vtg,..(0) = 0 and hm(0)u = 0. However there is no guarantee that there will exist u and v which

are also nonorthogonal (so that they can be scaled to satisfy v t u = 1).

In Sec. 6 we will see examples of cafacafi Gmn(z) for which (2.10) cannot be satisfied. In Sec. 4-5 we

will present some useful subclasses of cafacafi systems for which (2.10) can be satisfied at every step of the
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degree reduction proem. Towards this goal it proves to be convenient to reformulate the condition (2.10)

in terms of the state space descriptions (A,B,C,D) and (A,B,C,D)

I STATE SPACE FORMULATION OF FA CORIZ4 ILI7 V

In Sec. 3 of 11] we described causal systems having anticausal inverses in terms of minimal state space

descriptions. Let (A, B, C, D) be a minimal realization of Gm(z). Defining the realization matrix R and its

inverse

we obtain the minimal realization (A,B,C,D) for the anticausal inverse in the sense defined in Sec. 3.1 of

[1]. (We have omitted a subscript m on the matrices (A, B, C, D) etc., for simplicity). Note that the inverse

of R exists because of the assumed existence of the anticausal inverse (Theorem 5.1 of [1]). We can express

K L

Gm(z) = D + E z-"CA"-B, Hm(z) = G-'(z) = fi + E z"CA"1`1 (3.2)
n=1l n=1

In particular, therefore, D = g.(0) and B = hm(0), so the three conditions in (2.10) are equivalent to

vtD=0, Du=0, vtu=l. (3.3)

As stated before, D and D are singular, so the only nontrivial issue is to prove the existence of u and v such

that vtu = 1.

In all the results to follow, (A, B, C, D) and (1, , 6, D) are minimal realizations of Gn(z) and GZ1 (z)

respectively, and are related as in (3.1). Note that since Gm,(z) and G;1 (z) are FIR, all the eigenvalues of

A and A are equal to zero. By explicitly writing out the four components of the relation IM- 1 = I, we

obtain the four equations

AA+BC=I, AB+BD=O, CA+DC=0, CB+DD=I (3.4)

Similarly, by writing out R-17Z = I, we get

XA+ fC=I, ;B +fiD-=0, CA+DC--O, CB+DD--=1 (3.5)

We will find these equations useful for future reference.

Theorem 3.1. There exist vectors u and v satisfying vtD =0, Du = 0, and v t u = 1 if and only if

there exist vectors t and s satisfying

As=0, ttA=0, and tts=l. (3.6)
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Proof. Suppose vtD = 0 for some v. FRom (3.4) we see that this implies vtCA. = 0 and vtCBf = vt.

Defining t t = vtC we see that t t  = 0. Similarly we can show using (3.4) that if Du = 0 for some u then

As = 0 where a = Eu. With the quantities t and a defined in terms of v and u as above, we get

tts = vtCf&u = vtu

using CfE = I - Db [from (3.4)] and the fact that vOD = 0. Summarizing, if there exist u and v such that

v t D = 0 and Du = 0 then there exist t and s such that tt0 = 0, As = 0, and tts = vtu.

Second, suppose there exist vectors s and t such that As = 0 and ttA = 0. Defining u = Cs and

vt = ttB we can show using (3.5) that Du = 0 and v t D = 0, and furthermore vtu = tts. Combining

this with the observation in the preceding paragraph, we can say that there exist vectors u and v satisfying

vtD = 0, Du = 0, and v t u =1 if and only if there exist vectors t and s satisfying As = 0, ttA = 0, and

t t s = 1. VVV

In the above theorem we have established a one to one correspondence between the annihilators of the

pair (D, B) and the pair (A, i). So the degree reduction condition for the cafacafi factorization can be

reformulated as follows:

Theorem 3.2. The degree reduction step for the causal FIR system G..(z) with anticausal FIR inverse

G;1 (z) will be successful if and only if there exist vectors t and s satisfying (3.6), or equivalently vectors u

and v satisfying (3.3).

A different state-space condition

With Gm.(z) and Hm(z) expressed as in (2.5), we know that h(0)g(K) = 0 and h(L)g(0) = 0 (subscript

m on g(n) and h(n) omitted for convenience). This shows that we can satisfy (2.10) by taking vt to be

any row of h(L) and u to be any column of g(K). There will exist such a choice which further satisfies the

condition vOu = 1 as long as h(L)g(K) 6 0. In this connection, the following result is helpful.

Theorem 3.3. Consider the M x M system Gm(z) = -- 0z-ig(i) with anticausal FIR inverse

G;1 (z) = 0 z'h(i). Let (A, B, C, D) and (AL, fB, C, D) represent their respective minimal realizations

related in the usual manner, i.e., as in (3.1). Then h(L)g(K) = 0 if and only if ;,L-1AK-1 -0.

Proof. We know h(L) =- CAL-If and g(K) = CAK-lB, so that

h(L)g(K) = CAL-BCAK-B - iL-AK-B - CLAKB (using (3.5))

= j5jL-'AK-1B. 
(3.7)

The last equality follows because the FIR property and minimality of the realizations imply UL = 0 and
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AKB = 0 (Lemma 13.9.1, [4]). Now consider the product

E K ],L-Ag- [B AB ... Am-iB] (3.8)

where m is the McMillan degree of Gn(z). By using alz = 0 and AKB = 0 it follows that the only nonzero

element of this matrix product is the M x M block matrix CAjLl'AK-lB [i.e., h(L)g(K), by (3.7)] which

will appear on the top left corner. However by minimality we know that P and Q have full column-rank

and row-rank respectively (= m) so that the above product will be zero if and only if AL-IAK1- = 0. Thus

h(L)g(K) = 0 if and only if jL-1AK- -= 0. VVV

4. FACTORIZATION OF THE BIORTHONORMAL LAPPED TRANSFORM (BOLT7

The lapped orthogonal transform (LOT) was introduced in [7] and further studied in (6] and (8]. The

LOT is essentially an M channel maximally decimated analysis bank, in which the polyphase matrix satisfies

two properties: first, it is a first-order causal FIR system, that is,

G(z) = g(0) + z-Ig(1) (4.1)

(i.e., E(z) in Fig. 1.1(b) has the above form). Second, it is paraunitary, that is,

G1 (z) = a(z) = gt(0) + zgt(1).

The inverse, therefore, is anticausal FIR. Though G(z) is a first order system (i.e., the highest power of z-1

is z-'), its degree is equal to the rank of g(1).

A generalization of this to the biorthonormal case would result if we restrict G(z) above to be merely

FIR with an anticausal FIR inverse, and remove the paraunitary (orthonormal) constraint. The inverse is not

necessarily equal to G(z) anymore. We will call this system the biorthonormal lapped transform (BOLT).

By definition the BOLT is a maximally decimated analysis bank (Fig. 1), where the polyphase matrix

E(z) is a first order causal FIR transfer matrix (i.e., as in (4.1)), and has anticausal FIR inverse G-1 (z).

We sometimes say that G(z) is a BOLT matrix. Clearly the LOT is a special case of the BOLT. Unlike

the LOT, the anticausal FIR inverse of the BOLT could have higher order. Here is an example:

Z -1 +z 0 1 1 Z 0G(0)= 1 0 0 1 0 (4.2)-I =-1 0 Z1 G -z- 2 I-1 2+-- Z2 1

1-+z 0 Z- •Z+ 1-z



where G(z) has order = 1 and the FIR anticausal inverse has order = 2. However the degree of G-'(z) in z

is still equal to the degree of G(z) in z-' (see Observation 5 at the end of Sec. 5.1 in [I]).

Let (A, B, C, D) and (A, B, C, b) be minimal realizations of G(z) and its anticausal FIR inverse

G-1 (z), related as usual (i.e., Eq. (3.1)). Thus g(O) = D, and g(1) = CB. From the structure shown

in Fig. 4.1 we see that A = 0 for any minimal realization of G(z). So any vector s satisfies As = 0. Next, all

the eigenvalues of A are zero, and there exists tt # 0 satisfying tt A = 0. Thus, we can always find vectors

t and s satisfying (3.6). By using Theorem 3.2 we conclude that the degree reduction step will succeed.t

The reduced remainder function will continue to satisfy A = 0 so that we can repeat the degree reduction.

We therefore have:

Theorem 4.1. BOLT factorization. Consider an M-channel maximally decimated filter bank with

analysis bank polyphase matrix G(z) = g(G) + z-Ig(1). Suppose this has an FIR anticausal inverse. Then

we can factorize G(z) as

G(z) = V,,(z)V,_.(z)... V&(z)Go, (4.3)

that is, as in Fig. 4.2 where

1. p is the McMillan degree of G(z) (i.e., p = the rank of the M x M matrix g(1)),

2. Vm(z) = I- umvt + z-1umv, with vmun = 1, and

3. Go = G(1) and is nonsingular. 0

Comments.

1. Conversely, a product of the form (4.3) represents a causal FIR system with anticausal FIR inverse, but

it may not be BOLT. This is because in general the product does not have the form (4.1) but can have

higher terms, e.g., z- 2g(2). In the next section we will show how to further constrain the parameters of

(4.3) which will ensure that the product is BOLT.

2. If G(z) has real coefficients it can be verified that the coefficients of V,.(z) are also real.

The most general degree-one cafacafi system. A degree one system also has order = 1. So a degree

one cafacafi is a BOLT and can be factorized as above, with p = 1. So we can express it in the form

G(z) = (I - uvt + z-'uvt)Go, (4.4)

where utv = 1 and Go is nonsingular (in fact Go = G(1)). So the above equation represents the most

general degree-one cafacafL The matrix Go has M 2 elements and each of the vectors u and v has M

t Note that since A = 0, the quantity XL-1AK-1 = 0 in Theorem 3.3, and yet the factorization succeeds.

This is because AL-.AK-1 y 0 is only a sufficient but not necessary condition.
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elements. Since these elements are constrained by the equation u t v = 1, the number of degrees of freedom

in the above equation is equal to (2M - 1) + M 2 .

Smith-McMillan form. With p denoting the degree, it can be shown that the Smith-McMillan form of

G(z) is A(z) =i [ZoI- 0]. This follows from the fact that the quantities Ii defined in Theorem 5.20 IM -P

of Ill satisfy 0 _ I, <_. 1.

A second cascaded realization

The M x M building block Vm(z) and the factorization (4.3) can be rewritten in a form which makes

the cafacafi r perty obvious by inspection. To obtain this, let u., 0 5 i 5< M - 2 be a set of mutually

orthogonal vectors, which in turn are orthogonal to v. We see that V(z)ui = u.. (The subscript on V(z) is

dropped for simplicity.) We also see that V(z)u -z- 1 u. Thus

V(Z I O U .. U-2 UOUI...UM- U11 (4.5)

call this T

Since vtu = 1, the vector u is not in the span of the ut's. So the matrix T is nonsingular and we can rewrite

the above as

V(z) =T[1 iT-1 (4.6)

Thus, the general form of the degree-one cafacafi in Eq. (4.4) can be rewritten as

where T and S are nonsingular matrices. So the BOLT factorization Eq. (4.3) can be rewritten as

G(z) =Tp 1 z0 ] Tp-, [I z?1-...T [0I z01] TO (4.8)

where T, are nonsingular matrices. The structure is shown in Fig. 4.3. The previous factorization (4.3) has

only 2Mp + M 2 parameters which is less than the number of matrix elements AM2p + AM2 in (4.8). So there

is some redundancy in the representation (4.8), but its advantage is that it is explicitly clear that the inverse

is anticausal FIR.

5. MORE RESULTS ON FIRST ORDER SYSTEMS AND SIORTHONORMAL LAPPED TRANSFORMS

Consider a first order M x M transfer matrix of the form

G(z) = g(0) + z-'g(1). (5.1)

Let the McMillan degree be p (i.e., the rank of g(1) is p). Suppose G(1) is nonsingular (as is the case

when there exists an FIR inverse, since the determinant would then be a delay). We can then rewrite
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G(z) - G(1)F(z) where F(1) = I. So we can write

F(z) = I - UVt + z-1 U Vt (5.2)
M xppcxM

with the constant matrices U and Vt having rank p. We will now relate the properties of the inverse F-1 (z)

to the properties of the matrices UVt and VtU. Such a study adds significantly to the understanding of the

biorthonormal lapped transform.

A£1. hnwwe of &W~ ffat ou7.r ayaem (I- UVt + Zi'uvt)

The nature of the inverse of (5.2) depends largely on the properties of the p x p matrix VtU as shown

by the results to be developed below.

Lemma 5.1. Consider the system F(z) = I - UVt + z-UAVt where U and Y are M x p with rank p

(so that F(z) has degree p). There exists an anticausal inverse for this system if and only if VtU (which is

p x p) is nonsingular.

Proof. Fig. 5.1 shows an implementation of F(z) with p delays, i.e., a minimal implementation. The

state space description (A, B, C, D) for this is

A=0, B=Vt, C=U, D=I-UVt (5.3)

The realization matrix R is then

p M

=[A B]=p(0 V ) (5.4)

Recall from Theorem 5.1 of [11 that there exists an anticausal inverse if and only if the above matrix is

nonsingular. We will show that this matrix is nonsingular if and only if VtU is nonsingular. Suppose

Rxx = 0 for some vector x = XI]Then

Vtx 2 = 0, and UxI + x2 = 0. (5.5)

Combining these two equations we get VtUxi = 0. If ytU is nonsingular then x, = 0 and so x2 = -Ux, = 0

from (5.5). This implies that if 1?x = 0 then x is necessarily 0. So IZ is nonsingular.

On the other hand, if VtU is singular there exists y # 0 such that VtUy = 0. If we now choose xi = -y

and x2 = Uy, then X is annihilated by x proving that it is singular. So l is nonsingular if and only if V tU

is nonsingular. This completes the proof. VVV
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As an example suppose
/%Vt =[] 1-1] (5.6)

Then p = I but ytU = 0, so there does not exist an anticausal inverse. As another example suppose UVt

itself is nonsingular (i.e., p = M); then VtU is nonsingular and there exists an anticausal inverse, possibly

IHR The next theorem makes precise the conditions under which the inverses are FIR.

Theorem 5.1. Consider the first order system F(z) = I - -+ z-'UVt where U and V are M x p

with rank p (so UVt has rank p and F(z) has degree p). Then the inverse of F(z) is

1. FIR if and only if all eigenvalues of UVt are restricted to be O's and l's.

2. FIR and anticausal (i.e., F(z) is cafacafl) if and only if UVt has p of its eigenvalues equal to unity and

the remaining M - p eigenvalues equal to zero.

3. FIR and causal (i.e., F(z) is unimodular in z- 1) if and only ifUV has all eigenvalues equal to zero. <>

Comments.

1. Restricting the eigenvalues of a matrix P to be zeros and ones does not imply that P2 = P or that it is

a projection matrix.t For example, the matrix U in (5.6) has all eigenvalues = 0, but p2 = 0 9 P.

2. Since Ut has rank p it can have at most p nonzero eigenvalues. But it could be fewer, as in the extreme

example of a triangular matrix with all diagonal elements equal to zero. Another example is (5.6) which

has rank = 1, but all the eigenvalues are equal to zero.

Proof of Theorem 5.1. From the unitary triangularization theorem (11] we can write UVt = TATt

where TTt = I, and & is upper triangular with the eigenvaules {Ao, A1 ... Ap-. 1 , 0,... .0) on the diagonals.

(Since the rank is p there could be at most p nonzero eigenvalues). We can then express

F(z) = T (I - A+ z-lA) Tt (5.7)

so that
p-i

det F(z) = 1I (I - >' + z-1>). (5.8)

This is of the form cz-K (which is necessary and sufficient for the existence of an FIR inverse) if and only

if A), = 0 or 1 for each i. Since the degree of F(z) is p, the FIR inverse is anticausal if and only if the

determinant is cz-P (Theorem 5.3, [1]). This will be the case if and only if UVt has p eigenvalues equal to

unity (and, of course, the remaining M - p eigenvalues = 0). Finally the FIR inverse is causal (i.e., F(z) is

unimodular) if and only if the determinant is a constant, that is Ai 0 for all i. vv

t A matrix P is said to be a projection if it is Hermitian and p 2  p p (p. 75, [10]).
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We can combine Lemma 5.1 and Theorem 5.1 and restate everything in terms of VtU rather than UVt

as follows.

Theorem 5.2. Consider the system F(z) = I - UVt + z-'UVt where U and V are M x p with rank p

(so UVt has rank p and F(z) has degree p). Then

1. F(z) has an anticausal inverse if and only if VtU is nonsingular.

2. The inverse of F(z) is FIR if and only if all eigenvalues of VtU are restricted to be O's and l's.

3. The inverse of F(z) is FIR and anticausal (i.e., F(z) is cafacaji) if and only if VtU has all eigenvalues

equal to unity.

4. The inverse of F(z) is FIR and causal (i.e., F(z) is unimodular) if and only if VtU has all eigenvalues

equal to zero. 0

Proof. Part 1 is a repetition of Lemma 5.1. Parts 2 and 4 follow from Theorem 5.1 by using the fact

that every nonzero eigenvalue of the matrix PQ is an eigenvalue of QP (for any two matrices P and Q for

which PQ and QP are defined). Part 3 follows by combining parts 1 and 2; indeed, the nonsingularity of

VtU and the condition that the eigenvalues be restricted to be ones and zeros is equivalent to the statement

that all the eigenvalues of VtU are equal to unity. VVV

Example 5.1. The cases where VtU = Ip and VtU = 0 give examples of FIR systems with anticausal

and causal FIR inverses respectiveley. We have

(I - UVt + -Iuvt) -, =i I-uvt + zUVt for Vt U = I, (5.9)

II+UV-tt z-UVt forVtU=0

as one can verify by direct multiplication. Notice that if VtU = I1 then the inverse is also of first order.

So first order cafacafi systems with higher order inverses (as in (4.2)) are not covered by the system with

VtU = I,. In Sec. 2.1 we saw the special case where p = 1 (i.e., U and V were vectors with VtU = I and 0

respectively).

Example 5.2. The following exampleU~ = [o 00] [010 ] ,oI. U [o 0]

satisfies part 4 of Theorem 5.2 so that F(z) is unimodular, even though VtU #0.

Example 5.3. As a special case consider I - P + z-'P where P 2 = P. With p denoting the rank of P,

we can write P = UVt. Now p 2 = p implies UVtUVt = Uyt. Premultiplying by Ut and postmultiplying

with V and using the facts that UtU and VtV are nonsingular we obtain VtU = I. From part 3 of Theorem
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5.2 we therefore conclude that there exists an anticausal F lR inverse for I - P + z-P, when p2 = p. In

fact the inverse is I - P + zP, as can be verified by direct substitution.

EzampLe 5.4. Unimodular systemi By a slight modification of the above theorem we can show that

I + z-IU•t is unimodular if and only if V1tU has all eigenvalues equal to zero.

-2 GwiwAW ExpresAtw mad Cwqpb&eOf ON -. .. ofb . Bl~hn aL4Wd TrAwoMw

In Sec. 4 we considered the biorthonormal lapped transforms or BOLT systems. These are first order

cqfaca•i systems, that is, systems of the form G(z) = g(0) +z-Ig(1) with anticausal FIR inverses. Since this

implies G(1) is nonsingular, we can write G(z) = G(1)F(z) where F(z) is as in (5.2). Using Theorem 5.2

(part 3) we can say that a system G(z) is BOLT if and only if it has the form G(z) = G(1) (I-uvt +z-IUVt)

where VtU has all eigenvalues equal to unity.

In Sec. 4 we showed that the BOLT can be factorized as in (4.3) where

v.(Z) = - uvt + Z= 1 (5.10)

and p is the degree of G(z) (i.e., p = rank of g(1)). Conversely, if we have a product of the form (4.3) with

Vm(z) as above, it still represents a system with anticausal FIR inverse, but may have order > 1 (i.e., there

could be terms g(n)z-",n > 1 in G(z)). To ensure that the product has order = 1 (i.e., that it represents a

BOLT), we need to impose further restrictions on uk and vk. Suppose we restrict these vectors to be such

that

0, 1 i k-1, (5.11)viui = 11, iffk

Then it is easily verifed by induction that the product

G(z) = G(1)V,(z)V,-1 (z) ... V1 (z), (5.12)

with Vm(z) defined as above does reduce to the form

G(z) = G(1) (I - Uyt + z-uvt), (5.13)

with the constant matrices V and U given by

V=[vm v2  ... vp,., U=[uI U2  ... up]. (5.14)

Notice that the constant matrix G(1) occurs as the left-most factor unlike in (4.3). This difference is

immaterial; a slight variation of the steps would lead to the form (4.3). Except for this difference, the

structure for (5.12) is as in Fig. 4.2.
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Conversely, can we represent any BOLT system as in (5.12) with the restriction (5.11)? The answer

is in the affirmative: If G(z) is BOLT, this means in particular that it has an FIR inverse, aad so G(1) is

nonsingular. So we can always write a degree p BOLT as in (5.13), whereg Uand V are M x p matrices with

rank p. Now UVt = UTTtVt for any unitary T, and we can rewrite UVt = U•Vt by defining U1 = LT and

_i = TtVt. Note that V =/i - TtVtUT. By proper choice of T we can ensure that VitU1 is a triangular

matrix. In other words, we can amume without loss of generality that VtU is triangular. Since G(z) is

cqfacafi we see that this matrix has all diagonal elements equal to unity (use part 3 of Theorem 5.2), that is,

1 X ... X

VtU = 0 1 ... × (5.15)

L 0 0 ... I

where x stands for possibly nonzero elements. Now denote the columns of V and U as in (5.14). Then the

property (5.15) means that (5.11) is satisfied.

Thus we have defined a set of vectors u. and vm, 1 : m 5 p such that they satisfy (5.11). We already

mentioned that if such u,,, and v., are used in the product (5.12), the result has the form (5.13) with U and

V given by (5.14). In other words, the given BOLT matrix (5.13) can indeed be represented as in (5.12),

with the vectors satisfying (5.11).

We can summarize all of the above results as follows.

Theorem 5.3. BOLT Charactetization. Consider an M x M transfer matrix G(z). We say that this

is a BOLT if G(z) = g(0) + z-ig(1), and it has and anticausal FIR inverse. The following statements are

equivalent:

1. G(z) is a BOLT.

2. G(z) can be factorized as G(z) = G(1)Vp(z)V,-(z) ... VI(z) where G(1) is nonsingular and V•(z)

are as in (5.10), with the vectors vk and ui satisfying (5.11).

3. G(z) can be written in the form G(z) = G(1)(I-UVt +z-lUVt), where G(1) is nonsingular and VtU

has all eigenvalues equal to unity.

4. G(z) can be written in the form G(z) = G(1)(I-UVt +z-1UVt), where G(1) is nonsingular and VtU

has the form (5.15).

Thus if G(z) is BOLT with VtU written in the form (5.15), the columns of V and U [see (5.14)] satisfy

(5.11), and can be taken to be the vectors vm and Un in the factorization (5.12). So the factorization is

determined simply by identifying the columns of V and U. C>
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Dee of ftwdom. Thus the BOLT is characterized by (5.12) which has a nonsingular matrix G(1)

with M 2 elements, and 2p vectors ua,vk, with M elements each. That is, there are Wt + 2pM scalar

elements associated with the expression (5.12). But the number of freedoms is less than this, in view of

the constraints (5.11). In the real coefficient case it can be verified that the M x M degree-p BOLT has

M2 + 2pM - 0.5p(p + 1) degrees of freedom. In the special cae of the LOT (i.e., the paraunitary case)

we have uk = vk and G(1) is unitary so there are only 0.SM(M - 1) + pM - 0.5p(p + 1) degrees of

freedom. Traditional transform coding (which is a special case where Mt =0 and G(1) is unitary) has only

0.5M(M- 1) freedoms. The extra freedom offered by the BOLT can perhaps be exploited to obtain better

attenuation for the analysis filters (see example below), or to impose other constraints such as linear phase,

regularity (for wavelet synthesis (12]) and so forth. This topic requires detailed investigation, and is beyond

the scope of this paper.

Design Example 5.1: The BOLT filter bank

We now present a design example for the BOLT filter bank.t Let M = 8 [i.e., an eight channel filter

bank, see Fig. 1.1(a)]. Let the polyphase matrix E(z) = g(O) + z-1 g(1) with rank of g(1) equal to three

(i.e., degree of E(z) is three). This is constrained to be a BOLT by expressing it in the factored form (5.12)

and constraining the vectors to satisfy (5.11). Under these constraints, the magnitude responses jHk(eJiw) of

the analysis filters are optimized. The result is shown in Fig. 5.2 (a). For comparison, Fig. 5.2(b) shows the

responses of the corresponding LOT filter bank (i.e., with the vectors further constrained such that vi = uj

for each i). The improved filtering characteristics of the BOLT over the LOT is clear from the plots.

SDEGREE-TWO DYADIC BUILDING BLOCKS

If the degree-one reduction scheme of Sec. 2 has to work, there should exist vectors u and v such

that (2.10) holds. If this is not the case, one might consider extracting the building block from the right

rather than left, i.e., one might try the decomposition G..(z) = Gm.-l(z)Vm(z) instead of (2.6). In this

case the degree reduction equations remain the same except that g,.(0) and h,.(0) are interchanged. Thus,

degree-one reduction will fail when neither of the following two conditions

Condition 1: vtg.(0) =0, h.(0)u =0 , utv = 1, (6.1)

Condition 2: vth.(0) =0, g.(O)u = 0, utv = 1 (6.2)

can be satisfied for any choice of u and v.

t We would like to thank Yuan-Pei Lin, graduate student, Caltech, for generating this example.
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We can create examples of cqfacafi systems for which degree-one reduction will fail. For example, let us

consider the 2 x 2 case (M = 2). In this case we can exactly specify the conditions when the degree reduction

will fal.

Lemma 6.1. Let G.(z) be 2 x 2 cC!acafi with inverse H.(z) (both as in (2.5)). Assume g.(O) # 0

and ,,(0) 0 0 and K, L > 0 in (2.5). Then the degree reduction by one (using the building block (2.1)) will

fail if and only if gm(0)hm(O) = hIn(0)gm(0) = 0, that is, if and only if DD = DD = 0 in terms of state

space notations (Sec. 3). 0

Proof. Since the 2 x 2 matrices g.(O) and hm(O) are singular (Sec. 5.3 of [1]) and nonzero, the vectors

v and u satisfying vth,m(O) = 0 and gm(O)u = 0 are unique up to scale. Clearly g (0) and hl,(0) have

rank one, and we can write

g.(0) = ab t and h,(0) = cdt

for some 2 x 1 non null vectors a, b,c and d. Thus vth0(0) = 0 and g,(O)u = 0 imply, respectively,

vtc-=0 and btuf=O0.

From this we see that if vtu = 0, then u = c and v = b (up to scale) and this implies btc = vtu = 0, that

is, gm(0)hm(O) = 0. So if (6.2) cannot be satisfied then gm(0)hl(0) = 0. Conversely, let gm(0)hm(0) = 0.

Then btc = 0. So the conditions vthm(O) = 0 and gm(0)u = 0 imply, respectively, v = b and u = c (up

to scale) so that vtu = btc = 0, and (6.2) cannot be satisfied. Thus (6.2) cannot be satisfied if and only if

g.(0)h.(0) = 0. Similarly (6.1) cannot be satisfied if and only if h.(0)gn(0) = 0. V V V

Since the cafacafi system and its inverse satisfy the state space relations (3.4) and (3.5), we can restate

the above result in terms of state space parameters (Sec. 3) like this: the degree-one reduction step will fail

in the 2 x 2 case if and only if

B = CA =I.

This follows by setting DD = 0 in the last equation of (3.5) and DD = 0 in the last equation of (3.4).

2 x 2 Example where degree-one reduction fails

Now consider the M x M system

G,.(z) = abt + z- 1 1 + z-2abt, atb = 0. (6.3)

where a and b are non zero M x 1 vectors. We can verify that the inverse is G;'(z) = -abt + zI - abiz2,

by multiplying the two expressions. This system is therefore cafacafi. Since atb = 0, we have g.(0)h,.(0)
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hm(O)gm(O) = 0. So by Lemma 6.1, the degree reduction step will fail in the M = 2 case. For M = 2, the

system (6.3) therefore serves as a ca/acafi example where the degree-one reduction fails, that is, neither (6.1)

nor (6.2) be satisfied for any pair of vectors u and v.

In Appendix A we show that for arbitrary M the degree of (6.3) is equal to M, and present a minimal

implementation (Fig. A.1).

M x M example where degree-one reduction fails

If M > 2, the system in (6.3) is still calacaA but its degree can be reduced successfully by one, using

the building block (2.1). To see this note that in this case there exists a vector w orthogonal to both a and

b so that we can set u = v -= w and satisfy (6.1). To create an M x M example which cannot be factorized

into degree-one bulling blocks, consider

G(z) = ppt + abt + z- 1 (I _ ppt) + z-2abt (6.4)

where P is M x (M - 2), and a and b are column vectors such that [P a b] is unitary. It can then be

verified that its inverse is

G-'(z) = PPt - abt + z(I - ppt) _ z2abt, (6.5)

which is anticausal FIR. In the notation of (2.5) we have g,,(O) = PPt + abt and hm (O) = PPt - abt. Both

of these matrices have rank M- 1 (e.g., write gm(O) = [P a] [P bj t and apply Sylvester's inequality [4])

so that the annihilating vectors u and v in Eq. (6.1) are unique. In fact the annihilating vectors in (6.1) are

u = a and v = b so that utv = 0. Thus the condition utv = 1 in (6.1) cannot be satisfied. Similarly (6.2)

cannot be satisfied. So the degree of (6.4) cannot be reduced by extracting a degree-one cafacafi building

block.

The degree of G(z) is clearly 2_ 2 since the order is seen to be two from (6.4). We will show that the

degree is exactly two by displaying an implementation with two delays. Since [ P a b ] is unitary, we have

4= = aat + bbt + PPt. Using this we can see that the system G(z) in (6.4) can be implemented as in Fig.

6.1. So the degree of G(z) is two indeed.

6.2. Degree reduction equations with degree-two building blocks

The fact that we cannot factorize the 2 x 2 system (6.3) into degree-one blocks leads us to ask if we can

factorize a general 2 x 2 cafacafi system using a combination of degee-one and degree-two building blocks.

With some algebra it can be shown (Appendix B) that the most general 2 x 2 cafacafi system with degree

equal to two, which cannot be factorized into degree one cafacafi systems has the form

V 2 (z) = uvt + z- 11 + sz-2uvt, utv = 0, (6.6)
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where a is a nonzero scalar.t By explicit multiplication we can verify that the inverse is Vj1(z) = -suvt +

zI - z2uvt. Since V2 (z) is degree-two cofacaft, we have Idet V 2 (z)] = cz-2, c # 0.

Now let Gm.(z) be degree-m cafacafi with [det G,•(z)] = cmz-'. Suppose degree-one reduction fails

(i.e., we cannot find u and v satisfying either (6.1) or (6.2)). Suppose we wish to use (6.6) to obtain a degree

reduction by two, i.e., we wish to find a degree-(m - 2) cafacafi system Gm.-s2 (Z) such that

G,,,(z) = V2 (z)Gm._ 2 (z). (6.7)

Since [det V 2 (z)] = cz- 2 we have [det Gm.- 2 (z)] = c-2Z(- 2 ). It can be shown (Appendix C) that

Gm- 2 (z) will be cafacafi if and only if u and v are such that

g.(0) = uvtgn(l), h.(0) = -sh.(l)uvt (6.8)

where g.(n) and h,(n) are the impulse response coefficients of Gn(z) and its inverse respectively (see Eq.

(2.5)). If the above can be satisfied by choice of u and v then Grn.- 2(z) is cafacafi with degree m- 2 because

its determinant is cn_2z-(m- 2) (Theorem 5.3, (11).

Another example of an irreducible cafacafl system. Consider the 2 x 2 system G4 (z) = abt +

z-21 + z-4abt with atb = 0, which is the same as Eq. (6.3) with z replaced by z2 . So it is cafacafi. We

still have gn(0) = abt and h,.(O) = -abt so that degree-one reduction is not possible (as seen in Sec. 6.1).

Since gn(l) = 0, Eq. (6.8) cannot be satisfied. Thus we cannot do degree reduction by two, if we use the

building block (6.6). As the degree one building block and the degree two building block we use are the most

general cafacafi building blocks, the system G4(z) cannot be factorized into lower degree cafacafi blocks at

all.

Z FACTORIZATION OF CAUSAL FIR SYSTEMS HAVING FIR INVERSE

Let Gm.(z) be a causal FIR system, with an FIR inverse (not necessarily anticausal). Then its determi-

nant has the form cz-", though m does not represent the McMillan degree unless the inverse is anticausal.

Unless G,(z) is unimodular in z-1 , we have m > 0, and the determinant is zero for z = oo. In other words,

the constant coefficient gm(0) = Gm,,(o) is singular.

Suppose we wish to express G,(z) in the form Gin(z) = V.(z)Gm..(z) where Vm(z) is the familiar

cafacafi building block (2.7). Since Gm..-I(z) = Vm(z- 1 )Gm(z), it is still FIR. From Eq. (2.8) we see that

we can force it to be causal by choosing v such that vtg..(0) = 0. The singularity of gm(0) ensures the

t We can of course multiply this with a nonsingular constant matrix, but it can be absorbed in Gm.- 2 (Z)

in (6.7) and is of no interest.

19



existence of such nonnull v. The choice of u is arbitrary except for the requirement utv = 1 in (2.7). For

example we can make u = v with unit norm in which case Vm(z) becomes paraunitary.

Since [det V,.(z)] = z- 1 , we have [det Gm,.-.(z)] = cz-("-). Thus Gr,,-I(z) is causa! and FIR with

the degree of determinant reduced by one. We can repeat this process until we obtain

G,(z) = Vm(z)V,,.-i(z)... V&(z)Go(z) (7.1)

where GO(z) is unimodular (causal and FIR with determinant c 3 0). So we have proved:

Theorem 7.1. Let Gm(z) be M x M causal FIR with FIR inverse so that [det Gi(z)] = cz-m,c # 0.It
Then we can factorize it as in (7.1) where Vm(z) -- (i - umvi + z-1utvj), vmum = 1, and GO(z) is

unimodular in z-1. The matrices V,(z) can be chosen to be paraunitary if desired (by taking un = v,y) in

which case the prodact of quantities on the right hand side preceding Go(z) is paraunitary. 0

As in Sec. 4 we can also replace the building blocks Vj(z) as in (4.6) to obtain a factorization of the

form (4.8), where T0 is replaced with a unimodular remainder Go(z). If V j (z) are chosen to be paraunitary,

then all T, in (4.8) will be unitary.

We therefore see that any casual FIR system GN(z) with an FIR inverse can be written as GN(z) =

G.,,(z)G.,.(z) where G.,.(z) is causal FIR with anticausal FIR inverse, and Gc,,(z) is causal FIR with

causal FIR inverse. This follows by letting Go(z) = Gc,,(z) and lumping the remaining factors on the right

side of (7.1) into GQ, (z). In particular we can let Gc, a(z) be paraunitary without loss of generality. Notice,

however, that the degree of G,(z) is not, in general, the sum of the degrees of G0 ,8 (z) and G,,c(z), so this

is not a minimal decomposition.

5 CONCLUDING REMARKS

Many of the previously reported designs for perfect reconstruction filter banks were orthonormal (i.e.,

the polyphase matrix E(z) was paraunitary). In the IIR case this meant that if the analysis filters are causal

and stable (poles inside the unit circle) then the synthesis filters would be anticausal and stable (poles outside

the unit circle). In [1] we argued that for the FIR case, the more general class of biorthonormal systems can

be characterized if we can characterize all causal FIR polyphase matrices with anticausal FIR inverse (i.e.,

all cafacafi matrices). More generally, the relevance of systems with anticausal inverses was elaborated in

Sec. 1.1 of [1].

The basic similarity between causal systems with anticausal inverses and causal paraunitary systems

is fascinating. First, the latter is a special case of the former. Second, the former is characterized by

nonsingular realization matrices (for minimal realizations) whereas the latter is characterized by unitary
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realization matrices (up to similarity). Finally in the FIR case both of these classes have determinant equal

to cz-N where N is the McMillan degree. (That is, both of them achieve the maximum value that the

degree of a determiant can achieve, viz., the McMillan degree.) In both cases, the most general degree-one

FIR building block has the form (I - uvt + z-'uvt)Go where utv = 1 and Go is nonsingular. In the

paraunitary case, we further have u = v and Go is unitary.

The most significant difference between causal systems with anticausal inverses and causal paraunitary

systems is that the former cannot in general be factorized into degree one building blocks whereas the

latter can be so factorized. This factorization was used in the past [4] for the design and implementation

of orthonormal perfect reconstruction filter banks. We saw in Sec. 4 above that a special case of cafacafi

systems can indeed be factorized into degree-one cafacafi building blocks. These are cafacafi systems of order

one. This factorization gives rise to the biorthonormal lapped transform (BOLT) which is a generalization

of the lapped orthonormal transform LOT.

The BOLT is a maximally decimated analysis bank where the polyphase matrix is a first order causal

FIR system with anticausal inverse. Since it is a generalization of the lapped orthonormal transform, it

provides additional degrees of freedom in the design. It remains to see how to exploit this freedom while

designing filter banks for data compression, or for generation of biorthonormal wavelets and so forth. These

require further investigation.

There are other problems requiring further investigation. In this paper we introduced two cafacafi

building blocks, n~mely the degree one building block (2.7) and the degree two building block (6.6). (These

are the most general building blocks we need to consider). We showed that a subclass of cafacafi systems,

namely the BOLT system can be factorized using degree-one building blocks. On the other hand the degree

two building block (6.6) cannot be expressed as a product of the degree-one building blocks. Furthermore

there exist examples of cafacafi systems whose degree cannot be reduced using either of these two building

blocks (end of Sec. 6.2). That is, they cannot be expressed as a product of any combination of the two

building blocks.

But what does that mean? Perhaps there is a broader class of building blocks which will suffice for

factorization; perhaps the number of required building blocks somehow depends on the order and the size

(M x M) of the cafacafi matrices. This seems to be an open issue requiring deeper investigation.

In principle the set of all cafacafi matrices can be characterized in terms of the realization matrix 1Z (Eq.

(3.1)). For cafacafi systems, the matrix 2 is invertible, A has all eigenvalues equal to zero (equivalently AN -

0 where A is N x N), and furthermore the matrix A in the inverse (3.1) has all eigenvalues equal to zero. So

M x M cafacafi matrices with degree N are completely characterized by the set of all (N + M) x (N + M)
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matrices 1Z having the following properties: (i) they are nonsingular (ii) the top-left N x N submatrix A

has all eigenvalues equal to zero, and (iii) the top-left N x N submatrix A of 'X-1 has all eigenvalues equal

to zero. Finding a simple analytic way to impose these three restrictions on a constant (N + M) x (N + M)

matrix *R is still an open problem.

AppendixrA Degree ofthe second oreIr system (S.3)

For arbitrary M, the system (6.3) has degree M. To see this, first consider U(z)AI + z-labt, with

atb = 0. This is unimodular (i.e., [det U(z)] = c $ 0) with U-1 (z) - I - abtz-l. Clearly the causal FIR

system z-1 U(z) has the anticausal FIR inverse zI - abt, and by construction its determinant is cz-M.

In other words, z-lU(z) is cafacafi and its degree is M (Theorem 5.3, [1]). The system (6.3), which is

abt + z-1 U(z) therefore has degree M.

How do we find a structure for G(z) with only M delays? Since a and b are mutually orthogonal

vectors, we can define a M x M unitary matrix of the form [ P a b ] where P is M × (M - 2). (For this

purpose we assume that a and b have unit norm for simplicity.) We then have IM = aat + bbt + ppt,

so that we can implement z- 1 1M as shown in Fig. A.1(a). If we insert two new branches as shown in Fig.

A.l(b), we obtain a realization of (6.3) with M delays. This, therefore, is a minimal realization.

Appendix B. Most general degree-two building block for M-2

We now find the most general 2 x 2 degree-two cafacafi system G(z) which cannot be factorized into

degree-one building blocks. Since G(z) has degree = 2, it has the form

0(z) = g(O) + z-'g(1) + z-2g(2). (B.z)

If g(2) = 0, this becomes a BOLT and can be factorized (Sec. 4), so we must have g(2) 0 0. If g(0) = 0,

then the degree-reduction condition (2.10) is trivially satisfied because we can first choose u and then let

v = u. Summarizing, we have g(0) $ 0 and g(2) $0.

We know that G-1 (z) has degree two in z (end of Sec. 5.1, [1]). So it has the form H(z) = h(0) +

zh(1)+z 2 h(2). Since G(z) cannot be factorized into degree one cafacafi systems, we cannot factorize H(z- 1)

into degree one cafacafi systems. So we can modify the argument in the preceding paragraph and obtain

h(0) 6 0 and h(2) 6 0. If we now equate the like powers of z in G(z)H(z) = I we obtain, among other

things, g(0)h(2) = 0 and g(2)h(O) = 0. Since none of the matrices is null and all of them are 2 x 2, this

implies that they all have rank one. So we can write

G(z) = uvt + z-1g(1) + z-2xyt, (B.2)
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G- 1 (z) = H(z) = vLut + zh(1) + z2y±4x, (B.3)

for some nonzero vectors u,v,x,y, u.,vj,x± and y±.

From Lemma 6.1 we know that in the 2 x 2 case, failure of degree-one reduction implies h(O)g(O)

g(O)h(O) = 0. So we conclude that vtv. = 0 and utu = 0 (hence the notation with subscript 1). Now

the condition G(z)H(z) = I implies, in particular, that vty-L = 0 and ytvj. = 0 (since z2 and z- 2 terms

in the product are zero). Since all vectors are 2 x 1 and non null, we conclude y.- = vj and y = v up to

scale. Similarly from H(z)G(z) = I we conclude that x = u and x± = u.± up to scale. Summarizing, the

two matrices must have the form

G(z) = uvt + z-'g(1) + z-2sluv$. (B.4)

H(z) = V.Lu* + zh(1) + z2s 2 v LU , (B.5)

for non zero scalars 81,82. Since vtv.L = utu± = 0, we see that the condition G(z)H(z) = I implies

g(1)h(1) = I. So g(1) and h(1) are non singular. We can always factor them out, so let us assume g(1) =

h(1) = I. That is, except for a constant nonsingular factor, we have the form

G(z) = uvt + z-1 1 + z-2seuv t . (B.6)

H(z) = vxut + zI + z2s2v±u , (B.7)

for non zero scalars 81,82. Now by equating the coefficients of z in G(z)H(z) = I we get uvt = -s 2v.u 1 .t

Similarly v.Ut = --8uvt. This means, in particular, u _ v± up to scale, and therefore utv = 0. Summa-

rizing, the most general 2 x 2 degree-two cafacafi system G(z) which cannot be factorized into degree-one

building blocks has the form

G(z) = (uvt + z-11 + z-281uvI)g(1), (B.8)

where utv = 0, g(1) is arbitrary nonsingular, and a, is arbitrary but non zero. Its anticausal FIR inverse is

H(z) = [g(1)]- (-sIUVt + zI - z2uvt), (B.9)

as we can double check by multiplying G(z) and H(z).

Appendix C. Degree two reduction

Given the cafacafi system Gn(z) with inverse Hm(z) as in (2.5), suppose we wish to perform a degree

reduction by two, using the cafacafi building block V2 (z) in (6.6). This means that we wish to find the

vectors u and v such that G,,(z) can be expressed as in (6.7) where Gm.- 2 (Z) is cafacafA Since Gm-2(z) =
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Vý1 (z)Gm(z) it is clear that it is already FIR, and so is G-L 2 (z) - G;1 (z)V 2 (z). Only causality of

Gm.- 2(z) and anticausality of G-L 2(z) need to be enforced by choice of u and v. We have

G =-2(z) = V-l(z)Gm(z)= (-suv +zI- z~uvt) (g(0) + z-_gm(1)..) (C.1)

Causality of this requires that the coefficients of z and z2 be zero, that is, gn(0) - uvtgm(1) = 0, and

uvtgm(0) = 0. Premultiplying the first of the two conditions by vt and using vtu - 0 we verify that the

second requirement is automatically satisfied, so it is sufficient to satisfy gm,(0) - uvtgm(1) = 0. This proves

the first part in (6.8). Next

= G 12(z)=G-'(z)V2 (z)-- (hn(0) + zhm(1)+ ... )(uvi + z-I+ sz-.uvt). (C.2)

The anticausality of this requires that the coefficients of z- 1 and z- 2 be zero. Proceeding as before, we

obtain the second part in (6.8).
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(such as the input and output of the delay element) indicate scalar signals.
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Fig. 4.1. Implementation of g(O) + z-lg(1) where g(O) = D and g(1) = CB.

Fig. 4.2. Factorization of the degree-p biorthonormal lapped transform (BOLT) in terms of degree-one cafacafi

building blocks.

Fig. 4.3. A second factorization of the BOLT in terms of constant nonsingular matrices.

Fig. 5.1. An implementation of the system F(z).

Fig. 5.2. Design example 5.1. Magnitude responses of the analysis filters for an 8-channel filter bank. (a) BOLT

filter bank, and (b) LOT filter bank. The degree of the polyphase matrix is p = 3.

Fig. 6.1. Minimal structure for the M x M degree-2 oafaesfi system (6.4).

Fig. A.1. (a) Conceptual implementation of z-1 1M, and (b) implementation of the degree-M system given by

ab t + Z-11M + z-2abt.



Xn Ho~ ZH M oE I--t H -'-

(a)••
* 0

Analysis Decimators 4 Expanders Synthesis

bank Quantizers bank

X(n QM 2(n)

(b) •

z- 1  z

Delay Polyphase Polyphase Advance
chain matrix matrix chain

Fig. 1.1 (a) The maximally decimated filter bank, and
(b) the polyphase representation.



Fig. 2.1. Implementation of the degree-one building block.
The thick lines indicate vector signals and thin lines
(such as the input and output of the delay element)
indicate scalar signals.
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Fig. 2.2 (a) The extraction of a cafacafi building block, and
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Fig. 4.1. Implementation of g(0)+i-'g(l)
where g(O)=D and g(l)=CB.
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lapped transform (BOLT) in terms of degree-one
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constant nonsingular matrices.

Fig. 5.1. An implementation of the system F(z)
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